Porting Linux to the Digital Alpha microprocessor

Jim Paradis
Principal Software Engineer
Alpha Migration Tools Group
Digital Equipment Corporation

paradis@sousa.amt.tay1.dec.com

Linux/Alpha

What is Linux/Alpha?

- 32-bit port of Linux to Digital's Alpha CPU architecture
- Currently based on Linux 1.0.0 sources

Why Linux/Alpha?

- Small, cheap, high-performance operating system for entry-level Alpha systems (less \$\$\$)
- Freely-redistributable reference OS for Digital's OEM (chip & board) customers
- Establish Digital's presence in "Super-PC" marketplace (Alpha, PowerPC, P6/P7, etc).
- Stimulate "impulse" purchase of Alpha Chips [Don't worry... we'll make more 8-)]

Project Goals

Linux/Alpha should be:

Small

- · Minimal runtime on 1-2 floppies, full system on 340Mb disk
- Text-only system in 8Mb memory, Xbased system in 16Mb memory

Cheap

- Linux/Alpha will be distributed under GPL (ftp://ftp.dec.com/pub/DEC/Linux-Alpha)
- DEC may develop added-value components for sale (e.g. highperformance X servers), but a fully functional system will be free.

Compatible

- Source-compatible with Linux/Intel
- Investigating binary compatibility options with Linux/Intel

Fast

- Should not unduly hamper CPU performance
- · It's an Alpha; what can I say?

Our port vs. Linus' port

- Complementary efforts
 - Us: Fast time-to-market, 32-bit port, minimal changes to existing code structure.
 - Linus: 64-bit port, extensive changes to existing code structure to accommodate multiple architectures
- Different emphasis means each of us solves different problems and can save the other problems later on.
- Once Linux/Alpha 1.0 is self-hosting (5/95 timeframe), it can be used for 1.2 development.
- Eventual unification of code streams.
 - -We will contribute what we learned from 1.0 to Linus for the 1.2 codebase
 - Will eventually have 64-bit 1.2 kernel with both 32 and 64-bit APIs and ABIs
 - * Compatibility with Linux/Alpha
 - 1.0 binaries
 - * Useful for any possible Intel binary-compatibility strategy.

Hardware Support

- DEC 2000 AXP/DECpc 150 AXP (aka Jensen)
 - Adaptec 1742 SCSI
 - Floppy, keyboard, text-mode VGA
- DECchip Evaluation Boards
 - Floppy, keyboard, text-mode VGA
- Digital AXPpci/33 Motherboard
 - Floppy, keyboard, text-mode VGA
- Coming Soon:
 - Adaptec 1542 SCSI
 - NCR 53C810 SCSI
- Care to contribute? 8-)

Alpha vs. Intel

Similarities:

- Little-endian
- Support 32-bit integers & pointers
- Paged memory management

Differences:

- RISC vs. CISC
- Alpha does not have byte/word memory access instructions
- OSF PAL supports 7 interrupt levels,
 Intel has two (cli/sti)
- Intel has segmented as well as paged memory management
- Alpha has lighter-weight procedurecall mechanism than Intel
- Alpha has more register context to save than Intel. Intel has more nonregister context to save than Alpha.

Linux/Alpha: Design Decisions

- Make it work first, make it fast later
- 32-bit system: Default integer word size is 32 bits, and all addresses fit in 32 bits.
 - Eliminates 64-bit pitfalls in existing 32-bit code
 - Uses less memory & disk than 64-bit code
 - PC-class systems do not need 64-bit addressing capability (yet!)
 - 64-bit quantities still available for computation via long long and double datatypes.
- · Console and PALcode
 - SRM console on all platforms that support it.
 - Linux Mini-loader for most PC-class platforms (except DEC 2000)
 - OSF PALcode
 - * Writing new PAL is a pain
 - * OSF PAL generally applicable for most UNIX ports
 - * Freely-distributable version available

Design Decisions (cont'd)

· Memory Layout

```
0x0000000-0x3ffffffff: User Code/Data/Stack
0x4000000-0x6fffffff: Unused
0x70000000-0x7bfffffff: 32-bit KSEG
0x7c000000-0x7ffffffff: Kernel code/data/stk
```

- Addresses cannot exceed **0x7ffffff** due to sign-extension considerations
- Kernel and user in same memory space to allow easy kernel access to user memory
- **KSEG:** virtual = physical + constant 64-bit: constant = 0xfffffc000000000 (provided by PALcode) 32-bit: constant = 0x7000000 (We map this ourselves)
- Current 32-bit KSEG boundaries limit us to 192Mb of physical memory. Shouldn't be a problem for the first release...
- Kernel pages protected: KRW or KRO, UNA
- User pages protected: KRW, URW or URO
- Kernel can access user memory, user cannot access kernel memory.

Technical Challenges

· Kernel - context switching

- Intel gets complete switch by calling task gate
- OSF PAL switches minimal context, OS must switch rest. Most context lives in task_struct or on kernel stack.

· Memory Management

- Alpha 3-level page table "wastes" 2 pages per process; significant with big (8K) pages and small memory (8Mb system has only 1024 pages!) We have an answer 8-)
- Memory-management *algorithms* were portable, but implementations were not. We had to "rewrite" much of memory.c, keeping the algorithms but varying the details (*Linus redid the memory management in 1.2 to make the code more general*).

· File System

- Executable loading, mostly detail work
- Other than that, filesystem worked flawlessly from the beginning!

Technical Challenges (cont'd)

Device Drivers

- Bus access on Intel is straightforward (inb/outb, bus memory is physical memory)
- Bus access on Alpha requires glue logic in both hardware and software ("magic swizzles")
- Many PC devices come with Intel initialization code in onboard BIOS. Intel PCs, of course, will run this code before Linux boots. Alpha PCs won't.
- DMA engines operate differently on PC-class systems and on Alpha systems
- Problems need to be solved only once; other drivers "should" fall into place

Project Status

- · Developers' Kit publically available at ftp.dec.com.
- · Kernel boots to shell prompt, runs numerous utilities
 - Current shell is rc; tcsh and bash nearly working.
 - Can mount filesystems on floppy, SCSI disk, and CD-ROM.
 - Network taking shape (**ping** gets a response!)
 - Source-level kernel debug available on DEC 2000 and on ISP simulator.
 - Utilities known to work:

arch banner basename cal cat chattr chgrp chmod chown cksum cmp column comm cp diff dir dirname du dump echo egrep **elvis** env expand fgrep fmt **ftp** grep head hexdump id ln look ls lsattr mesg mkdir mke2fs mknod more mount mv od **ping** printenv pwd rc rm rmdir sort strings sum sync tac tail time touch wc whereis haltit and more!

- Many utilities compile and run the first time!
- Plan to be self-hosting by DECUS (5/95)

Future Directions

- Self-hosting version of Linux/Alpha 1.0 by 5/95
- Unification with Linux/Alpha 1.2 code base by summer '95
- Work with XFree86 on X server
- Increased platform and hardware support (code contributions more than welcome!)
- Investigate Intel binary compatibility
- Open to suggestions!