
An overview of POSIX threadsAn overview of POSIX threads

Basics of POSIX Threads Basics of POSIX Threads 
programming on Linuxprogramming on Linux

Jerry Feldman <gaf@blu.org>Jerry Feldman <gaf@blu.org>



What We will talk aboutWhat We will talk about

• What is a Thread.What is a Thread.
• Why use threads. Thread vs. fork().Why use threads. Thread vs. fork().
• Deadlock and Race ConditionsDeadlock and Race Conditions
• Kernel threads vs. user threads. This is important in Linux 2.6+ Kernel threads vs. user threads. This is important in Linux 2.6+ 

kernels with NPTL.kernels with NPTL.
• Basic thread concepts and functions: thread creation, thread join, Basic thread concepts and functions: thread creation, thread join, 

mutex, conditions, attributes.mutex, conditions, attributes.
– I won’t go into details of attributes.I won’t go into details of attributes.

• Some examples. I have trimmed some of the examples to fit into the Some examples. I have trimmed some of the examples to fit into the 
presentationpresentation

• ReferencesReferences

• I’ll post the presentation and examples on the BLU web I’ll post the presentation and examples on the BLU web 
site by early next week.site by early next week.



What is a threadWhat is a thread

• In general, a thread is a separate context In general, a thread is a separate context 
of execution that runs within a single of execution that runs within a single 
program. program. 

• Then, what is a process?Then, what is a process?
– A process is a separate context of execution A process is a separate context of execution 

with respect to the host operating system. with respect to the host operating system. 
When you run a program, it runs as a When you run a program, it runs as a 
separate process. separate process. 



Then what is the difference?Then what is the difference?

• A process has its own memory and other A process has its own memory and other 
attributes that make it independent.attributes that make it independent.

• A thread is a part of an existing program. It A thread is a part of an existing program. It 
shares its memory with the rest of the shares its memory with the rest of the 
program and runs within the priority of the program and runs within the priority of the 
program. program. 



Why do we have bothWhy do we have both

• A thread may be termed as a “light weight A thread may be termed as a “light weight 
process”. Since the OS does not need to process”. Since the OS does not need to 
allocate memory and the other things it allocate memory and the other things it 
does with a process, starting a thread is does with a process, starting a thread is 
cheaper, and faster. A thread is like a cheaper, and faster. A thread is like a 
sports car in comparison to a process sports car in comparison to a process 
which is a truck. which is a truck. 



Performance of Threads over fork.Performance of Threads over fork.

• As I mentioned earlier, thread creation is As I mentioned earlier, thread creation is 
cheaper than creating a process. cheaper than creating a process. 

0.9840.984

1.0031.003

0.9380.938

User TimeUser Time

0.5740.5741.6481.648NPTLNPTL

0.5350.5351.6781.678Linux Linux 
ThreadsThreads

8.5218.5219.5559.555Fork()Fork()

System System 
TimeTimeReal TimeReal TimePackagePackage



Why use threads at allWhy use threads at all

• As I mentioned earlier, thread management As I mentioned earlier, thread management 
takes up fewer system resources than does takes up fewer system resources than does 
process management. process management. 

• A threaded application that abides by the POSIX A threaded application that abides by the POSIX 
standard is more portable between Linux and standard is more portable between Linux and 
Unix as well as to other operating systems. Unix as well as to other operating systems. 

• Many things we do in programming can be done Many things we do in programming can be done 
better concurrently. Note that almost all web better concurrently. Note that almost all web 
browsers use threads.browsers use threads.



What thread packages are What thread packages are 
availableavailable

• A number of different thread implementations A number of different thread implementations 
have been used on Linux, but the most common have been used on Linux, but the most common 
is a POSIX implementation called LinuxThreads. is a POSIX implementation called LinuxThreads. 

• With the arrival of the 2.6 kernel we also have With the arrival of the 2.6 kernel we also have 
the Native POSIX Thread Library (NPTL). This the Native POSIX Thread Library (NPTL). This 
model performs better than the old LinuxThreads model performs better than the old LinuxThreads 
model and is more POSIX compliant. model and is more POSIX compliant. 

• Most commercial Unix systems have either a Most commercial Unix systems have either a 
POSIX compliant thread package, or a POSIX compliant thread package, or a 
proprietary package, like Sun’s LWP.proprietary package, like Sun’s LWP.



What is a DeadlockWhat is a Deadlock

• A deadlock is when two or more threads in your A deadlock is when two or more threads in your 
program are blocked from gaining access to a program are blocked from gaining access to a 
resource. The following example is a resource. The following example is a 
modification of Djikstra’s Dining Philosophers.modification of Djikstra’s Dining Philosophers.
– John and David are at a table each with a bowl of John and David are at a table each with a bowl of 

spaghetti. One must have both a fork and a spoon to spaghetti. One must have both a fork and a spoon to 
eat, but there is only one fork and one spoon. They eat, but there is only one fork and one spoon. They 
must only take a single utensil at a time. must only take a single utensil at a time. 

– John takes the fork and David takes the spoon. Now, John takes the fork and David takes the spoon. Now, 
neither of them can eat unless we change the rules or neither of them can eat unless we change the rules or 
they cheat.they cheat.



How do we prevent deadlocksHow do we prevent deadlocks

• There are several ways to prevent deadlocks. One way is to There are several ways to prevent deadlocks. One way is to 
define the order by which a resource is acquired. In our little John define the order by which a resource is acquired. In our little John 
and David example, let’s add a rule that one must take the fork and David example, let’s add a rule that one must take the fork 
first. first. 

1.1. John takes the fork before David can get it.John takes the fork before David can get it.
2.2. John can then take the spoon. John can then take the spoon. 
3.3. John eatsJohn eats
4.4. John puts down the utensils, first the spoon, then the fork. John puts down the utensils, first the spoon, then the fork. 
5.5. David takes the forkDavid takes the fork
6.6. Then he takes the spoonThen he takes the spoon
7.7. Then he gets angry and starts a food fight. Then he gets angry and starts a food fight. 
8.8. He then puts down the utensils.He then puts down the utensils.

– The above method is one of the more common methods. The above method is one of the more common methods. 



Now we have a Race ConditionNow we have a Race Condition

• A race condition occurs when multiple threads A race condition occurs when multiple threads 
access and manipulate the same data access and manipulate the same data 
concurrently, and the outcome of the execution concurrently, and the outcome of the execution 
depends on the particular order in which the depends on the particular order in which the 
access takes place.access takes place.

– Take 2 threads john and David), each want to Take 2 threads john and David), each want to 
increment the value of a number which starts as 1.increment the value of a number which starts as 1.
1.1. John and David both load the value, 1 at the same time.John and David both load the value, 1 at the same time.
2.2. John and David increment the value.John and David increment the value.
3.3. John and David store the value simultaneously. John and David store the value simultaneously. 
4.4. The result is 2!!!, but it should be 3.The result is 2!!!, but it should be 3.



How do we solve a Race ConditionHow do we solve a Race Condition

• To solve the race condition we introduce a lock. In POSIX To solve the race condition we introduce a lock. In POSIX 
threads, this is called a MUTEX, or a Mutual Exclusion Primitive. threads, this is called a MUTEX, or a Mutual Exclusion Primitive. 

1.1. John and David both try to lock the number, but John acquires the John and David both try to lock the number, but John acquires the 
lock first. David waits.lock first. David waits.

2.2. John loads the number.John loads the number.
3.3. John increments it to 2. John increments it to 2. 
4.4. John stores it. John stores it. 
5.5. John unlocks it.John unlocks it.
6.6. David now loads it.David now loads it.
7.7. David then increments it to 3. David then increments it to 3. 
8.8. David stores it. David stores it. 
9.9. David releases the lock.David releases the lock.
10.10. The number is now 3. The number is now 3. 



Kernel vs. User ThreadsKernel vs. User Threads

• There are 3 basic threading models:There are 3 basic threading models:
1.1. User threads. Each thread is managed and User threads. Each thread is managed and 

dispatched in user space. The kernel does not get dispatched in user space. The kernel does not get 
involved. involved. 

2.2. Kernel Threads. In this case, the kernel manages Kernel Threads. In this case, the kernel manages 
each of the threads. Both LinuxThreads and NPTL each of the threads. Both LinuxThreads and NPTL 
use this model (called 1-on-1).use this model (called 1-on-1).

3.3. Combination. The thread package uses the benefits Combination. The thread package uses the benefits 
of each. Most commercial Unix thread packages of each. Most commercial Unix thread packages 
use this model (called M-on-N). This requires a use this model (called M-on-N). This requires a 
great deal of additional support in the kernel.great deal of additional support in the kernel.



Thread SafenessThread Safeness

• Thread-safe means that a function may be Thread-safe means that a function may be 
called concurrently by many threads called concurrently by many threads 
without destructive results. without destructive results. 
– Some standard C library calls are not Some standard C library calls are not 

threadsafe because they may contain a static threadsafe because they may contain a static 
variable. For instance, the ctime(3) function variable. For instance, the ctime(3) function 
returns a buffer containing the formatted time.returns a buffer containing the formatted time.



Thread safe exampleThread safe example

• The following function is not thread safe:The following function is not thread safe:
char *notsafe()char *notsafe()
{{

static char foo[128];static char foo[128];
/* populate foo *//* populate foo */
return foo;return foo;

}}

• The following modification makes it threadsafe.The following modification makes it threadsafe.
char *Threadsafe(char *foo, size_t foosize)char *Threadsafe(char *foo, size_t foosize)
{{

    /* populate foo *//* populate foo */
    return foo;return foo;

}}
The reason why the second function is threadsafe is that the calling thread passes The reason why the second function is threadsafe is that the calling thread passes 
the buffer into the function.the buffer into the function.



ErrnoErrno

• In C, the variable, In C, the variable, errno, errno, is a global is a global 
variable set by library functions and variable set by library functions and 
system calls. This is a bad thing for system calls. This is a bad thing for 
threads since it makes those functions threads since it makes those functions 
who set it not thread safe. who set it not thread safe. 

• In threads, each thread gets its own errno In threads, each thread gets its own errno 
thus preventing library functions from side thus preventing library functions from side 
affecting other threads.affecting other threads.



The Thread APIThe Thread API

• Before I present the basic thread API, I think it is Before I present the basic thread API, I think it is 
important to define a few more concepts:important to define a few more concepts:
– A thread object is the running thread.A thread object is the running thread.
– A mutex is a mutual exclusion primitive, similar in A mutex is a mutual exclusion primitive, similar in 

concept to a semaphore. concept to a semaphore. 
– An attribute is attached to either a thread or mutex, An attribute is attached to either a thread or mutex, 

and does things like making the thread either joinable and does things like making the thread either joinable 
or detached. Or a mutex recursive.or detached. Or a mutex recursive.

– A condition is an object where a thread waits until it A condition is an object where a thread waits until it 
receives a signal or a timeout.receives a signal or a timeout.



General Thread API informationGeneral Thread API information

• Most functions return 0 on success and an Most functions return 0 on success and an 
error code on unsuccessful return. These error code on unsuccessful return. These 
functions do not set errno. functions do not set errno. 



General Thread API informationGeneral Thread API information

• Most functions return 0 on success and an Most functions return 0 on success and an 
error code on unsuccessful return. These error code on unsuccessful return. These 
functions do not set errno. functions do not set errno. 

Condition attributes objectsCondition attributes objectspthread_condattr_pthread_condattr_

ConditionsConditionspthread_cond_pthread_cond_

Mutex attributes objectsMutex attributes objectspthread_mutexattr_pthread_mutexattr_

MutexesMutexespthread_mutex_pthread_mutex_

Thread attributes objectsThread attributes objectspthread_attr_pthread_attr_

Threads themselves and Threads themselves and 
miscellaneous subroutinesmiscellaneous subroutinespthread_pthread_

Functional Group Functional Group Routine Prefix Routine Prefix 



Creating a threadCreating a thread

• int  pthread_create(pthread_t  *  thread, int  pthread_create(pthread_t  *  thread, 
pthread_attr_t * attr, pthread_attr_t * attr, 
void *(*start_routine)(void *), void *(*start_routine)(void *), 
void * arg);void * arg);
– Thread is a pointer to the thread object to be created.Thread is a pointer to the thread object to be created.

– attr is the thread attribute (or NULL for the default attribute).attr is the thread attribute (or NULL for the default attribute).
Most of the time, you will not set an attribute. One attribute you might set is Most of the time, you will not set an attribute. One attribute you might set is 
detachstate. The default for a thread is . The default for a thread is joinablejoinable. . A A joinablejoinable thread  thread 
remains in memory until joined. A remains in memory until joined. A detacheddetached thread resources are freed when  thread resources are freed when 
the thread exits.the thread exits.

– start_routine is the function where you want to start the thread. It's argument is a start_routine is the function where you want to start the thread. It's argument is a 
pointer, and it returns a pointer. The return value is only relevant for the pointer, and it returns a pointer. The return value is only relevant for the 
pthread_joinpthread_join() function.() function.

– arg is a pointer to an argument. You can cast an integer and pass that directly if arg is a pointer to an argument. You can cast an integer and pass that directly if 
you want.you want.



Terminating a threadTerminating a thread

• You can terminate a thread in a few ways.You can terminate a thread in a few ways.
– Thread returns from its Thread returns from its start_routinestart_routine..

– The thread calls The thread calls pthread_exit().pthread_exit().

– The thread is cancelled by a The thread is cancelled by a pthread_cancelpthread_cancel() call.() call.

– The entire process is terminated.The entire process is terminated.

• void pthread_exit(void *retval);void pthread_exit(void *retval);
– Exits the thread and returns a value to its creator.Exits the thread and returns a value to its creator.



Joining a threadJoining a thread

• The only way to get the system to release the resources The only way to get the system to release the resources 
acquired by creating a joinable thread is to join them.acquired by creating a joinable thread is to join them.

• int pthread_join(pthread_t th, int pthread_join(pthread_t th, 
void **thread_return);void **thread_return);
– The calling thread is blocked while waiting for thread, The calling thread is blocked while waiting for thread, thth, , to to 

complete. complete. 

– If  thread_return  is not NULL, the return value of If  thread_return  is not NULL, the return value of thth is stored in  is stored in 
the location pointed to by thread_return.  The return value of the location pointed to by thread_return.  The return value of thth  
is either the argument it gave to pthread_exit(3), or is either the argument it gave to pthread_exit(3), or 
PTHREAD_CANCELED if PTHREAD_CANCELED if thth was  cancelled. It expects that the  was  cancelled. It expects that the 
return value is a return value is a (void *). (void *). See the following example.See the following example.



Simple Thread Example 1 of 2Simple Thread Example 1 of 2
#include <pthread.h>
#include <stdio.h>
#include <string.h>
#define NUM_THREADS     5

void *PrintThread(void *threadnum)
{
  printf("Thread number %d\n", (int)threadnum);
  pthread_exit(threadnum); /* return thread number */
}



Simple Thread Example 2 of 2Simple Thread Example 2 of 2
int main (int argc, char *argv[])
{
  pthread_t threads[NUM_THREADS]; /* for each thread */
  int rc, t; void *tv;
  for(t=0;t < NUM_THREADS;t++){
    printf("Creating thread %d\n", t + 1);
    rc = pthread_create(&threads[t], NULL, PrintThread, (void *)(t + 1));
    if (rc) {  fprintf(stderr, "pthread_create() is %s\n", strerror(rc));
      exit(-1);
    }
  }
  /* Threads are joinable release the resources. */
     for(t=0;t < NUM_THREADS;t++){
    rc = pthread_join(threads[t], NULL);
    if (rc){ fprintf(stderr, "pthread_exit() is %s\n", strerror(rc)); exit(-1); }
    else printf("Thread %d joined and returned %d\n", t+1, (int)tv);
  }
  return 0;
}



SynchronizationSynchronization

• As we saw in the race condition definition, we As we saw in the race condition definition, we 
need to have some kind of locking device. need to have some kind of locking device. 
– Threads calls them MUTEX (Mutual Exclusion)Threads calls them MUTEX (Mutual Exclusion)

• Only one thread may own (or lock) a mutex at a time. Only one thread may own (or lock) a mutex at a time. 

• A fast mutex is one that can only be locked once by the A fast mutex is one that can only be locked once by the 
owner. owner. 

• A recursive mutex may be locked multiple times by the A recursive mutex may be locked multiple times by the 
owner. owner. 

• A error checking mutex causes a lock to return if it would A error checking mutex causes a lock to return if it would 
block.block.



Mutex Creation and InitializationMutex Creation and Initialization

• There are two ways to create and There are two ways to create and 
initialize a mutexinitialize a mutex

1.1. Statically by using the built-in initialization Statically by using the built-in initialization 
constants.constants.

– pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER;pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER;

2.2. Dynamically by calling pthread_mutex_init.Dynamically by calling pthread_mutex_init.
– pthread_mutex_t amutex;pthread_mutex_t amutex;

rc = pthread_mutex_init(&amutex, NULL);rc = pthread_mutex_init(&amutex, NULL);
Note that the second parameter is an attribute. You can create an attribute that sets Note that the second parameter is an attribute. You can create an attribute that sets 
the mutex up as recursive or error checking. Fast is the default.the mutex up as recursive or error checking. Fast is the default.

– int pthread_mutex_destroy(pthread_mutex_t *mutex);int pthread_mutex_destroy(pthread_mutex_t *mutex);
This destroys the mutex.This destroys the mutex.



Locking and unlockingLocking and unlocking

• The following functions are used to lock and The following functions are used to lock and 
unlock a mutex.unlock a mutex.
int pthread_mutex_lock(pthread_mutex_t *mutex);int pthread_mutex_lock(pthread_mutex_t *mutex);
Attempt to lock a mutex. If the mutex is already locked, the calling Attempt to lock a mutex. If the mutex is already locked, the calling 
thread blocks. If the mutex is a recursive mutex, and the calling thread blocks. If the mutex is a recursive mutex, and the calling 
thread is the owner (currently holds the lock) this does not block).thread is the owner (currently holds the lock) this does not block).
int pthread_mutex_unlock(pthread_mutex_t *mutex);int pthread_mutex_unlock(pthread_mutex_t *mutex);
Unlocks the mutex.Unlocks the mutex.
int pthread_mutex_trylock(pthread_mutex_t *mutex);int pthread_mutex_trylock(pthread_mutex_t *mutex);
Allows a thread to see if a mutex is locked. If it is not locked then the Allows a thread to see if a mutex is locked. If it is not locked then the 
calling thread acquires the mutex, if it is locked by another thread it calling thread acquires the mutex, if it is locked by another thread it 
returns EBUSY.returns EBUSY.



Mutex Example 1 of 5Mutex Example 1 of 5
#include <pthread.h>     /* pthread functions and data structures */
#include <stdio.h>       /* standard I/O routines                 */
#define NUM_EMPLOYEES 2                   /* size of each array.    */
/* global mutex for our program. assignment initializes it */
pthread_mutex_t a_mutex = PTHREAD_MUTEX_INITIALIZER;
struct employee {
    int number;
    int id;
    char first_name[20];
    char last_name[30];
    char department[30];
    int room_number;
};
/* global variable - our employees array, with 2 employees */
struct employee employees[] = {
    { 1, 12345678, "danny", "cohen", "Accounting", 101},
    { 2, 87654321, "moshe", "levy", "Programmers", 202}
};
/* global variable - employee of the day. */
struct employee employee_of_the_day;



Mutex Example 2 of 5Mutex Example 2 of 5
/* function to copy one employee struct into another */
void copy_employee(struct employee* from, struct employee* to)
{
    int rc; /* contain mutex lock/unlock results */
    /* lock the mutex, to assure exclusive access to 'a' and 'b'. */
    rc = pthread_mutex_lock(&a_mutex);
    to->number = from->number;
    to->id = from->id;
    strcpy(to->first_name, from->first_name);
    strcpy(to->last_name, from->last_name);
    strcpy(to->department, from->department);
    to->room_number = from->room_number;
    /* unlock mutex */
    rc = pthread_mutex_unlock(&a_mutex);
}
/* function to be executed by the variable setting threads thread *//* function to be executed by the variable setting threads thread */
void*do_loop(void* data)void*do_loop(void* data)
{{
        int my_num = *((int*)data);   /* thread identifying number         */int my_num = *((int*)data);   /* thread identifying number         */
        while (1) {while (1) {
                /* set employee of the day to be the one with number 'my_num'. *//* set employee of the day to be the one with number 'my_num'. */

copy_employee(&employees[my_num-1], &employee_of_the_day);copy_employee(&employees[my_num-1], &employee_of_the_day);
        }}
}}



Mutex Example 3 of 5Mutex Example 3 of 5
/* like any C program, program's execution begins in main */
int
main(int argc, char* argv[])
{
    int        i;              /* loop counter                          */
    int        thr_id1;        /* thread ID for the first new thread    */
    int        thr_id2;        /* thread ID for the second new thread   */
    pthread_t  p_thread1;      /* first thread's structure              */
    pthread_t  p_thread2;      /* second thread's structure             */
    int        num1      = 1;  /* thread 1 employee number              */
    int        num2      = 2;  /* thread 2 employee number              */
    struct employee eotd;      /* local copy of 'employee of the day'.  */
    struct employee* worker;   /* pointer to currently checked employee */

    /* initialize employee of the day to first 1. */
    copy_employee(&employees[0], &employee_of_the_day);

    /* create a new thread that will execute 'do_loop()' with '1'       */
    thr_id1 = pthread_create(&p_thread1, NULL, do_loop, (void*)&num1);
    /* create a second thread that will execute 'do_loop()' with '2'    */
    thr_id2 = pthread_create(&p_thread2, NULL, do_loop, (void*)&num2);



Mutex Example 4 of 5Mutex Example 4 of 5
/* run a loop that verifies integrity of 'employee of the day' many */
    /* many many times.....                                             */
    for (i=0; i<60000; i++) {
        /* save contents of 'employee of the day' to local 'worker'.    */
        copy_employee(&employee_of_the_day, &eotd);

worker = &employees[eotd.number-1];

        /* compare employees */
if (eotd.id != worker->id) {
    printf("mismatching 'id' , %d != %d (loop '%d')\n",

   eotd.id, worker->id, i);
    exit(0);
}
if (strcmp(eotd.first_name, worker->first_name) != 0) {
    printf("mismatching 'first_name' , %s != %s (loop '%d')\n",

   eotd.first_name, worker->first_name, i);
    exit(0);
}



Mutex Example 5 of 5Mutex Example 5 of 5
if (strcmp(eotd.last_name, worker->last_name) != 0) {
    printf("mismatching 'last_name' , %s != %s (loop '%d')\n",

   eotd.last_name, worker->last_name, i);
    exit(0);
}
if (strcmp(eotd.department, worker->department) != 0) {
    printf("mismatching 'department' , %s != %s (loop '%d')\n",

   eotd.department, worker->department, i);
    exit(0);
}
if (eotd.room_number != worker->room_number) {
    printf("mismatching 'room_number' , %d != %d (loop '%d')\n",

   eotd.room_number, worker->room_number, i);
    exit(0);
}

    }
    printf("Glory, employees contents was always consistent\n");
    return 0;
}



ConditionsConditions

• A  condition is a synchronization device that A  condition is a synchronization device that 
allows threads to suspend execution and allows threads to suspend execution and 
relinquish the processors  until  some  predicate  relinquish the processors  until  some  predicate  
on shared data is satisfied.on shared data is satisfied.
– In essence a thread acquires a mutex, then waits on In essence a thread acquires a mutex, then waits on 

a condition until it receives a signal or a timeout. The a condition until it receives a signal or a timeout. The 
mutex is automatically released while the thread is mutex is automatically released while the thread is 
waiting, and then reacquired before it returns from the waiting, and then reacquired before it returns from the 
condition. condition. 

– Another thread may signal a condition by waking up Another thread may signal a condition by waking up 
one or all of the threads. one or all of the threads. 



Condition APIsCondition APIs

• pthread_cond_t cond = PTHREAD_COND_INITIALIZER;pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
Create a static condition (similar to mutex).Create a static condition (similar to mutex).

• int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
Initializes a dynamically created condition.Initializes a dynamically created condition.

• int pthread_cond_destroy(pthread_cond_t *cond);int pthread_cond_destroy(pthread_cond_t *cond);
Destroy a dynamically created condition.Destroy a dynamically created condition.

• int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
Wait on a condition for a signal to occur.Wait on a condition for a signal to occur.

• int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const 
struct timespec *abstime);struct timespec *abstime);
  Wait on a condition for a signal or a timeout to occur.Wait on a condition for a signal or a timeout to occur.

• int pthread_cond_signal(pthread_cond_t *cond);int pthread_cond_signal(pthread_cond_t *cond);
Signals the condition to release ONE thread. Signals the condition to release ONE thread. 

• int pthread_cond_broadcast(pthread_cond_t *cond);int pthread_cond_broadcast(pthread_cond_t *cond);
Signal the condition to release All threads that may be waiting. Signal the condition to release All threads that may be waiting. 

• Note that Note that pthread_cond_wait and pthread_cond_wait and pthread_cond_timedwait are cancellation points. pthread_cond_timedwait are cancellation points. 



A client server queuing example.A client server queuing example.

• The following example takes several arguments, The following example takes several arguments, 
specifically, an input file, an output file, the specifically, an input file, an output file, the 
number of servers and the number of clients. number of servers and the number of clients. 

• A server reads the input file and places each line A server reads the input file and places each line 
on a queue, and wakes up a client.on a queue, and wakes up a client.

• A client then grabs a line from the queue, and A client then grabs a line from the queue, and 
writes it to the output file. writes it to the output file. 



Queue example 1 of 24Queue example 1 of 24
#include <pthread.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/times.h>
#include <sys/wait.h>
#include <assert.h>
#include <ctype.h>
char *strdup(const char *);
#if defined (PTHREAD_THREADS_MAX)
#   define MAXTHREADS PTHREAD_THREADS_MAX
#else
#   define MAXTHREADS 100
#endif
#define WAIT_TIME  2 /* 2 seconds default */



Queue example 2 of 24Queue example 2 of 24
/******************* QUEUE Operations ***********************/
/******************* QUEUE Data Structures *******************/
typedef struct llist {
  struct llist *next;
  void *data;
} LLIST;

typedef struct lqueue {
  LLIST *head, *tail;
  pthread_mutex_t mut;
  pthread_cond_t cond;
  volatile int count;
  int wait_time; /* Number of seconds to wait on queue */
} LQUEUE;



Queue example 3 of 24Queue example 3 of 24
/* CreateQueue */
LQUEUE *CreateQueue(int wait_time)
{
  int rv;
  LQUEUE *new = malloc(sizeof(LQUEUE));
  if (new) {
    new->head = new->tail = NULL;
    rv = pthread_mutex_init(&new->mut, NULL);
    if (rv) {
      free(new);
      return NULL;
    }
    rv = pthread_cond_init(&new->cond, NULL);
    if (rv) {
      pthread_mutex_destroy(&new->mut);
      free(new);
      return NULL;
    }
    new->count = 0;
    new->wait_time = wait_time;
  }
  return new;
}



Queue example 4 of 24Queue example 4 of 24
/*
 * QueueDestroy
 */
/* Assumes that queue is empty */
void QueueDestroy(LQUEUE *queue)
{
  pthread_mutex_destroy(&queue->mut);
  pthread_cond_destroy(&queue->cond);
  free(queue);
}



Queue example 5 of 24Queue example 5 of 24
/* AddDatatoQueue Always signal when adding data */
int AddDatatoQueue(void *data, LQUEUE *queue)
{
  LLIST *newlist = malloc(sizeof(LLIST));
  if (newlist == NULL)  
     return -1;
  newlist->next = NULL;
  newlist->data = data;
  pthread_mutex_lock(&queue->mut); /* Acquire the queue */
  if (queue->count == 0) {
    queue->head = queue->tail = newlist;
  } else {
    queue->tail->next = newlist;
    queue->tail = newlist;
  }
  queue->count++;
  /* Release the queue and notify clients */
  pthread_mutex_unlock(&queue->mut);
  pthread_cond_signal(&queue->cond);
  return 0;
}



Queue example 6 of 24Queue example 6 of 24
/* RemoveDataFromQueue
 * This function is used to simply remove data from queue
 * Called by a thread that has not already acquired the lock */
void *RemoveDataFromQueue(LQUEUE *queue)
{
  LLIST *this;
  void *data = NULL;
  pthread_mutex_lock(&queue->mut);
  if (queue->count > 0) {
    this = queue->head;
    if (--(queue->count) <= 0) {
      queue->head = queue->tail = NULL;
    } else {
      queue->head = this->next;
    }
    data = this->data;
    free(this);
  }
  pthread_mutex_unlock(&queue->mut);
  return data;
}



Queue example 7 of 24Queue example 7 of 24
/* RemoveDataFromQueueNolock
 * This function is used to simply remove data from queue
 * Called by a waiting thread that must lock the queue first */
void *RemoveDataFromQueueNolock(LQUEUE *queue)
{
  LLIST *this;
  void *data = NULL;
  if (queue->count > 0) {
    this = queue->head;
    if (--(queue->count) <= 0) {
      queue->head = queue->tail = NULL;
    } else {
      queue->head = this->next;
    }
    data = this->data;
    free(this);
  }
  return data;
}
/************** END OF QUEUE OPERATIONS *******************/



Queue example 8 of 24Queue example 8 of 24
/*********** General data structures *********************/
typedef struct {
  int tnum; /* Number assigned by creator */
  pthread_t tid; /* My thread id assigned by system */
  int verbose;
  int rv;       /* value I return */
  LQUEUE *queue; /* My queue */
  /* for servers, name of input file, for clients, pointer to
   * OFTYPE.
   */
  void *file; 
} TARG;
typedef struct {
  char *filename;
  pthread_mutex_t mut;
} OFTYPE;
OFTYPE ofile = {
  NULL, PTHREAD_MUTEX_INITIALIZER
};
/*********************** Global Data ***************************/
/* RunFlag:When zero, tells threads to quit.
 * Does not need to be protected by mutex */
static volatile RunFlag = 1; 
TARG threads[MAXTHREADS];



Queue example 9 of 24Queue example 9 of 24
int IsWS(char *s)
{
  /* Bypass leading spaces */
  while(*s && isspace(*s)) ++s;
  return (*s == '\0');
}
/* This can side affect ibuf */
char *tdup(char *ibuf)
{
  char *sp;
  /* move to first non white */
  while(*ibuf && isspace(*ibuf))
    ++ibuf;
  if (*ibuf == '\0')
    return NULL;
  sp = ibuf + strlen(ibuf) -1; /* point to last char of string */
  /* decrement sp until it points to last non-white */
  while(isspace(*sp)) --sp;
  sp[1] = '\0'; 
  return strdup(ibuf);
}



Queue example 10 of 24Queue example 10 of 24
/* Server:
 * Read input file until end of file.
 * place each record on the queue, let a */
static void *Server(void *argp)
{
  TARG *targ = argp;
  FILE *ifile;
  struct timespec abstime;
  char buf[256], *data;
  int rv, added = 0;
  if (targ->file == NULL) {
    fprintf(stderr, "S%03X:No file name\n", targ->tnum);
    targ->rv = -1;
    pthread_exit(targ);
  }
  if (targ->queue == NULL) {
    fprintf(stderr, "S%03X:No queue\n", targ->tnum);
    targ->rv = -1;
    pthread_exit(targ);
  }
  if (targ->verbose) fprintf(stderr, "S%03X:running\n", targ->tnum);



Queue example 11 of 24Queue example 11 of 24
 ifile = fopen(targ->file, "r");
  while(fgets(buf, sizeof(buf), ifile)) {
    if (IsWS(buf))
      continue;
    data = tdup(buf); /* make a trimmed copy */
    if (data == NULL) {
      fprintf(stderr, "S%03X:Unable to allocate:%s\n", 

      targ->tnum, 
      strerror(errno));

      targ->rv = -1;
      pthread_exit(targ);
    }
    added++;
    AddDatatoQueue(data, targ->queue);
    rv = pthread_cond_signal(&targ->queue->cond);
    if (rv) {
      fprintf(stderr, "S%03X:Error on cond signal:%s\n", 

    targ->tnum, strerror(rv));
    }
  }
  fclose(ifile);



Queue example 12 of 24Queue example 12 of 24
 if (rv) {
    fprintf(stderr, "S%03X:Error on queue mutex:%s\n", 

    targ->tnum, strerror(rv));
    free(data);
    targ->rv = -1;
    return targ;
  }
  while(RunFlag && targ->queue->count > 0) {
    gettimeofday((struct timeval*)&abstime, NULL); /* Recompute wait time */
    abstime.tv_sec += targ->queue->wait_time; /* Time out after 10 seconds */
    abstime.tv_nsec = 0;
    rv = pthread_cond_timedwait(&targ->queue->cond, 

&targ->queue->mut, 
&abstime);

    if (rv && rv != ETIMEDOUT) {
      fprintf(stderr, "S%03X:Error on cond wait:%s\n", 

      targ->tnum, strerror(rv));
      break;
    }
  }



Queue example 13 of 24Queue example 13 of 24
pthread_mutex_unlock(&targ->queue->mut);
  RunFlag = 0;
  pthread_cond_broadcast(&targ->queue->cond);
  if (targ->verbose)
    fprintf(stderr, "S%03X:Normal Exit, %d records queued\n", 

    targ->tnum, added);
  targ->rv = 0;
  pthread_exit(targ);
}



Queue example 14 of 24Queue example 14 of 24
/* writes data to file, frees data */
static int process_data(int tnum, OFTYPE *ofile, void *data)
{
  FILE *fp;
  int rv;
  fp = fopen(ofile->filename, "a+");
  if (fp == NULL) {
    fprintf(stderr, "C%03X:Error on open %s:%s\n", 

    tnum, ofile->filename, strerror(errno));
    free(data);
    return -1;
  }
  rv = pthread_mutex_lock(&ofile->mut);
  if (rv) {
    fprintf(stderr, "C%03X:Error on file mutex:%s\n", 

    tnum, strerror(rv));
    free(data);
    return -1;
  }
  fprintf(fp, "C%03X:%s\n", tnum, data);
  fclose(fp);
  pthread_mutex_unlock(&ofile->mut);
  free(data);
  return 0;
}



Queue example 15 of 24Queue example 15 of 24
/* 
 * Wait on queue until either signalled or done.
 */
static void *Client(void *argp)
{
  int rv;
  pthread_t tid;
  TARG *targ;
  struct timespec abstime;
  LQUEUE *queue;
  void *data;
  int processed = 0;
  int timedout = 0;
  targ = (TARG *)argp;
  targ->rv = 0;
  queue = targ->queue;
  if (targ->verbose)
    fprintf(stderr, "C%03X:running acquiring\n", targ->tnum);
  rv = pthread_mutex_lock(&queue->mut);
  if (rv) {
    fprintf(stderr, "C%03X:Error on mutex:%s\n", 

    targ->tnum, strerror(rv));
    targ->rv = -1;
    pthread_exit(targ);
  }



Queue example 16 of 24Queue example 16 of 24
 if (targ->verbose)
    fprintf(stderr, "C%03X:running acquired\n", targ->tnum);
  /* We loop on the predicate. cond_timedwait can wakeup
   * for other reasons
   */
  while(RunFlag) {
    /* Remove elements from queue */
    while (targ->queue->count > 0) {
      pthread_cond_broadcast(&queue->cond);
      if ((data = RemoveDataFromQueueNolock(queue))) {

pthread_mutex_unlock(&queue->mut);
/* allow another thread to run */
pthread_cond_signal(&queue->cond);
++processed;
process_data(targ->tnum, targ->file, data);
/* Reacquire lock for the cond wait */
pthread_mutex_lock(&queue->mut);

      }
    }



Queue example 17 of 24Queue example 17 of 24
 /* Recompute wait time */
    gettimeofday((struct timeval*)&abstime, NULL);
    abstime.tv_sec += targ->queue->wait_time; /* Time out after n seconds */
    abstime.tv_nsec = 0;
    /* Recheck predicate before waiting */
    if (RunFlag == 0) {
      break;
    }
    rv = pthread_cond_timedwait(&queue->cond,

&queue->mut,
&abstime);

    if (rv && rv != ETIMEDOUT) {
      fprintf(stderr, "C%03X:Error on cond wait:%s\n", 

      targ->tnum, strerror(rv));
      targ->rv = 0;
      break;
    } else if (rv == ETIMEDOUT) {
      rv = 0;
      timedout++;
    }
  }



Queue example 18 of 24Queue example 18 of 24
 pthread_mutex_unlock(&queue->mut);
  if (targ->verbose) {
    if (rv == 0) {
      if (timedout)

fprintf(stderr, "C%03X:Successful completion, %d records, %d timeouts\n", 
targ->tnum, processed, timedout);

      else
fprintf(stderr, "C%03X:Successful completion, %d records\n", 

targ->tnum, processed);
    }
  }
  pthread_exit(targ);
}



Queue example 19 of 24Queue example 19 of 24
static char *iam;
void usage(const char *iam)
{
  fprintf(stderr, "Usage: %s -s n -c n [ -v ] [ -w n ] input-file output-file where\n", iam);
  fprintf(stderr, "\t-s\tNumber of servers (must be > 0)\n");
  fprintf(stderr, "\t-c\tNumber of clients (must be > 0)\n");
  fprintf(stderr, "\t-w\tWait time for client queue\n");
  fprintf(stderr, "\t-v\tRun verbosely\n");
}



Queue example 20 of 24Queue example 20 of 24
int main(int argc, char **argv)
{
  int i;
  int fd, rv, c;
  int clients = 0;
  int servers = 0;
  char *ifile = NULL;
  int wait_time = WAIT_TIME;
  void *trv;
  struct timespec abstime;
  /* nthreads == number of child processes */
  int nthreads = 0;
  LQUEUE *queue;
  pthread_t tid;
  int thread_num = 0;
  int rq;
  int verbose = 0;
  if (iam = strrchr(argv[0], '/'))
    ++iam;
  else
    iam = argv[0];
  tid = pthread_self(); /* Get my threadid */



Queue example 21 of 24Queue example 21 of 24
 while((c = getopt(argc, argv, "vc:s:w:")) != -1) {
    switch(c) {
    case 'v':
      verbose = 1; break;
    case 'c':
      clients = atoi(optarg); break;
    case 's':
      servers = atoi(optarg);  break;
    case 'w':
      wait_time = atoi(optarg);  break;
    default:
      usage(iam);
      return -1;
    }
  }
  if (optind < argc)
    ifile = argv[optind++];
  if (optind < argc)
    ofile.filename = argv[optind++];
  if (ifile == NULL || ofile.filename == NULL) {
    usage(iam);
  }



Queue example 22 of 24Queue example 22 of 24
 queue = CreateQueue(wait_time);
  assert(queue);
  nthreads = servers + clients;
  if (nthreads > MAXTHREADS ||
      servers <= 0 || clients <= 0) {
    usage(iam);
    return -1;
  }
  /* Start clients */
  for(thread_num=0;thread_num < clients;++thread_num) {
    threads[thread_num].tnum      = thread_num + 1;
    threads[thread_num].verbose   = verbose;
    threads[thread_num].queue     = queue;
    threads[thread_num].file      = &ofile;
    if(rv = pthread_create((pthread_t *)&threads[thread_num].tid,
    NULL, Client,   (void *)&threads[thread_num])) {
      fprintf(stderr, "Client thread %d create failed:%s\n",

      thread_num+1, strerror(rv));
      /* Set last good thread for join */
      RunFlag = 0;
      pthread_cond_broadcast(&queue->cond);
      break;
    }
  }



Queue example 23 of 24Queue example 23 of 24
 /* Start servers */
  for(i=0;i < servers;++i, ++thread_num) {
    threads[thread_num].tnum      = thread_num + 1;
    threads[thread_num].verbose   = verbose;
    threads[thread_num].queue     = queue;
    threads[thread_num].file      = ifile;
    if(rv = pthread_create((pthread_t *)&threads[thread_num].tid,
       NULL, 

   Server,
   (void *)&threads[thread_num])) {

      fprintf(stderr, "Server thread %d create failed:%s\n",
      thread_num+1, strerror(rv));

      /* Set last good thread for join */
      RunFlag = 0;
      pthread_cond_broadcast(&queue->cond);
      break;
    }
  }



Queue example 24 of 24Queue example 24 of 24
 if (RunFlag == 0) {
    fprintf(stderr, "%d threads created, error, run is false\n", thread_num);
  } else if (verbose) {
    fprintf(stderr, "%d servers, %d clients running\n", 

    servers, clients, thread_num);
  }
  /* now wait for join */
  for(i=0;i<thread_num;i++) {
    rv = pthread_join(threads[i].tid, &trv);
    if (rv) {
      fprintf(stderr, "Thread %d join failed:%s\n",

      threads[i].tid, strerror(rv));
    } else {
      rv = ((TARG *)trv)->rv;
      if (rv < 0) {

fprintf(stderr, "Thread %d returned %d\n", threads[i].tnum, rv);
      } else if (verbose) {

fprintf(stderr, "join success on %d\n", threads[i].tnum);
      }
    }
  }
  QueueDestroy(queue);
  return 0;
}



ReferencesReferences
I used some material from theseI used some material from these

• Programming with POSIXProgramming with POSIX®® Threads Threads, Dave Butenhof, Addison-, Dave Butenhof, Addison-
Wesley.Wesley.

• POSIX Thread ProgrammingPOSIX Thread Programming
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.htmlhttp://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html

• Getting Started With POSIX ThreadsGetting Started With POSIX Threads
http://dis.cs.umass.edu/~wagner/threads_html/tutorial.htmlhttp://dis.cs.umass.edu/~wagner/threads_html/tutorial.html

• Programming POSIX ThreadsProgramming POSIX Threads
http://www.humanfactor.com/pthreads/http://www.humanfactor.com/pthreads/

• YoLinux Tutorial: POSIX thread (pthread) librariesYoLinux Tutorial: POSIX thread (pthread) libraries
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.htmlhttp://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

• Multi-Threaded Programming With POSIX ThreadsMulti-Threaded Programming With POSIX Threads
http://users.http://users.actcomactcom.co..co.ilil/~/~choochoo//lupglupg/tutorials/multi-thread/multi-thread.html/tutorials/multi-thread/multi-thread.html

• Time for Cambridge BreweryTime for Cambridge Brewery


