
  

IPv6 Home Networking

Daniel Hagerty
hag@linnaean.org



  

IPv6 Networks I Have Known

● Setup MIT AI Lab in 1999 with MIT SIPB as 
upstream towards 6bone.  Look ma, I can 
ping6!

● Used 6to4 and Hurricane Electric to run it at 
home in 2007.

● Provisioned Cambridge Bandwidth 
Consortium's (AS10255) coreward BGP, 
colocation subnets, and member tunnels.

● Starting in on my employer.  Next step is 
training.



  

HE Registration



  

HE Tunnel Creation



  

HE Tunnel Creation on OS-X
# Create a generic tunnel interface
ifconfig gif0 create

# What are the v4 tunnel endpoints (local, remote)?
ifconfig gif0 tunnel 18.111.38.249 216.66.22.2

# Assign v6 addresses
ifconfig gif0 inet6 2001:470:7:7e2::2 \ 
    2001:470:7:7e2::1 prefixlen 128

# Tunnel is default route to v6 internet
route -n add -inet6 default 2001:470:7:7e2::1

and from there, it just works, modulo your firewall.  
These are their instructions for this OS.  YOSWV
# Firewall example for ipfw
add 02125 permit ip4 from 216.66.22.2 to \ 
18.111.38.249 proto ipv6 in recv re0
add 03050 permit ip4 from 18.111.38.249 to \ 
216.66.22.2 proto ipv6 out xmit re0



  

You probably already run it
$ ping6 -c 2 -w 10 ff02::1%eth0
PING ff02::1%eth0(ff02::1) 56 data bytes
64 bytes from fe80::2e0:81ff:fe80:b398: icmp_seq=1 
ttl=64 time=0.040 ms
64 bytes from fe80::230:48ff:fe99:5d53: icmp_seq=1 
ttl=64 time=0.070 ms (DUP!)
[...]
64 bytes from fe80::66b9:e8ff:fecd:b084: 
icmp_seq=1 ttl=64 time=0.668 ms (DUP!)
64 bytes from fe80::3e07:54ff:fe62:afe: icmp_seq=1 
ttl=64 time=0.670 ms (DUP!)
64 bytes from fe80::426c:8fff:fe50:67ba: 
icmp_seq=1 ttl=64 time=0.812 ms (DUP!)
^C
--- ff02::1%eth0 ping statistics ---
1 packets transmitted, 1 received, +22 duplicates, 
0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.040/0.279/0.812/0.207 ms



  

Saved from grief by v6

● We recently misconfigured a power control 
box's v4 net.  Apparently unreachable.

● But our switch said it was alive and had a MAC.
● It spoke v6, as revealed by ping6 ff02::1.
● It supported logins via v6.
● Login over v6, fix typo'd address, move on.
● General reset procedure would not have been 

fun, given the critical hosts on the power box.



  

What's Changed Since 2010?

● No more google whitelist.
● Netflix, yahoo, facebook, akamai, wikipedia, etc
● Much more traffic at home
● v6 service available from work's last two ISPs
● Comcast reports 50% of its network is v6 

capable, and is deploying to customers
● TimeWarner is deploying to customers
● T-Mobile has 100% coverage
● Verizon over LTE in some areas



  

Generic v6 algorithm

● Get IPv6 to your border.  Native, tunnel.
● Enable it on the border box you control (firewall, 

frequently).
● But your topology doesn't have to be congruent.
● Number internal interfaces
● Either statically number internal hosts, use RA, 

or play with DHCPv6.
● Put AAAA records in DNS.
● Mail is a good first app, because it's a naturally 

robust design.



  

Why is Comcast eager for v6?

● RFC1918 provides 18 million addresses
● Comcast has 20 million video customers with 

an average of 2.5 set-top boxes per customer 
which need 2 IP addresses per box == 100 
million addresses

● This doesn't account for the network that 
connects these boxes, or their VOIP offering, or 
their internet service.

– Alain Durand at NANOG37
● Amazon, Google, and more have the same 

problem.



  

Programming

● Same old low level socket routines.  Use 
PF_INET6, and struct sockaddr_in6.

● New, multi-protocol, thread-safe host/address 
resolution routines:

gethostbyname → getaddrinfo

gethostbyaddr → getnameinfo
● Your favorite languages probably have 

bindings.
● Where you used one IPv4 socket, you may 

need a socket per address family now.



  

getaddrinfo output
$ getaddrinfo --stream --service http \ 
www.google.com
Resolved host 'www.google.com', service '80'

socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ 
'173.194.75.147:80'
socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ 
'173.194.75.103:80'
socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ 
'173.194.75.99:80'
socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ 
'173.194.75.104:80'
socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ 
'173.194.75.106:80'
socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ 
'173.194.75.105:80'
socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP) + \ 
'[2607:f8b0:400c:c01::6a]:80'

### Output has been wrapped



  

Perl Server Example
use IO::Socket;
use IO::Socket::IP;

my @listener_common = (
    Listen => TRUE,
    LocalPort => $port_number,
    ReuseAddr => TRUE,
    );

$listener6 = IO::Socket::IP->new(
@listener_common,
Domain => PF_INET6,
V6Only => TRUE,
) || die "socket(PF_INET6): $!";

$listener4 = IO::Socket::IP->new(
    @listener_common,
    Domain => PF_INET,
    ) || die "socket(PF_INET): $!";

# Select loop here



  

IPv6 Ups and Downs: Ups

● It's a network protocol.  When it does its job, 
you don't think about it.

● My wife uses it and doesn't notice.
● Can directly address house “internal” machines 

from IPv6 networks.
● >50% of incoming email received over v6.
● google, facebook, yahoo, wikipedia, netflix, 

comcast all running production IPv6.
● My house has exceeded 50% v6 traffic on 

some days. Youtube + Netflix.



  

What's new for the v4 clued

● IPv6 is mostly IPv4 with bigger addresses, 
however:
● Link local addresses
● Extensive use of multicast
● Link scoping to help target the above
● Stateless address auto configuration (SLAAC)
● Router advertisements
● Multiple addresses per interface is typical

● This isn't a complete list, but are the differences 
I see all the time.



  

Bigger Addresses

● 128 bits long, 4 times bigger than IPv4
● Represented in hex, not decimal
● Verbosely represented as 

2001:0db8:b009:0000:0000:0000:0000:006a
● Some tricks to make them smaller, but the real 

world still gives you addresses like 
2001:470:8917:8:216:cbff:feb7:ae2b 



  

Address Compression

● You can leave off leading zeros of digit groups:  
“fd00::0123” and “fd00::123” are equivalent.

● You can compress a run of zeros with “::” 
ONCE, and the run has to be 16 bit aligned.  
For example, the fd00:: example above.  If you 
have “2001:db8:0:0:0:1:0:0”, “2001:db::1:0:0” is 
valid, “2001:db8:0:0:0:1::” is legal, but 
“2001:db8::1::” is not.

● You can use IPv4 notation for the last 32 bits of 
an address, e.g. 2001:db8::192.0.2.255 is legal. 
Same address as 2001:db8::c000:2ff.



  

Prefixes You'll Probably See

v6 Prefix v4 Approx Equiv Notes

:: 0.0.0.0 Unspecified/IN_ADDR_ANY

::1 127.0.0.1 Loopback

::ffff:0.0.0.0/96 v4 mapped onto v6 sockets

2001:db8::/32 192.0.2.0/24 Documentation Prefix

fc00::/7 10/8, 172.16/12, 
192.168/16

Local Unicast (ULA)

fe80::/10 169.254.0.0/16 Link Local

ff00::/8 224.0.0.0/4 Multicast



  

Address Allocation

● Warm and breathing?  You can get a /48 (2.5 
ipv4 internets; 65536 64 bit subnets)

● Residential policy allows /56
● Preference for nibble-aligned delegations for 

operation ease. /36, /40, /44, /48, etc.
● Traditional v4-like PA/PI assignments available.
● Roughly 281 trillion /48s available
● Expect much assesment when 2000::/3 is about 

gone (35 trillion /48s, 2000 per person at 17e9 
people).  I'm guessing it will take a bit.



  

Routable Unicast Space
Prefix Usage

2000::/3 Global unicast

2001:0::/32 Teredo

2001:db8::/32 Documentation Prefix

2002::/16 6to4

3ffe::/16 6bone (deprecated)

● 4000::/3 through c000::/3 are reserved, as are 
several other smaller holes.  We have 5 tries at 
address allocation before we need to do IP over 
again.



  

Link Local Addresses (fe80::/10)

● Like IPv4's 169.254.0.0/16 prefix, but used 
extensively.

● Every single IPv6 interface has one as part of 
configuration.

● Link scoped, meaning the address is relative to 
an interface.  fe80::1 on one link might be a 
different host than fe80::1 on another link.

● Routing protocols often use them.



  

Multicast (ff00::/8)

● IPv6 does away with broadcast entirely.
● ff02::1 is the multicast equivalent of an IPv4 

broadcast.
● Like link local addresses, they require link 

scoping.
● Propagation scoping is encoded in the 4th octet: 

e.g. the “2” in ff02:: addressed packets confines 
them to the link they were sent on (like 
224.0.0.0/24 in IPv4).



  

Link Scoping

● You need to specify an interface for link local 
and multicast addresses.

● Append “%” and an interface name to the 
address.

● For example, “ping6 ff02::1%eth0” should get 
ping responses from everything in eth0's 
broadcast domain.

● Interface names are OS specific.  Windows 
uses integers. 



  

Autoconfiguration

● All hosts can use link local addresses to 
communicate across a single subnet with no 
central planning.

● The main ingredient for inventing unique 
addresses is the EUI-64, a 64 bit hardware 
identifier.  Firewire uses it natively.

● Ethernet MACs can be promoted to EUI-64 by 
inserting “ff:fe” into the middle, after the OUI. 

● Only works with /64 prefixes.



  

Router Advertisements (RA)

● Routers tell clients the prefixes in use and 
clients build themselves addresses with them.

● Clients route to the routers they see, even if it's 
a broken laptop somebody has been 
experimenting with.

● This isn't anything like DHCP.



  

DHCPv6

● There is one.
● It's late to the party.
● Support is spotty.
● MS Vista or higher, OS-X >= 10.7.
● Haven't played with it yet; SLAAC works, and 

half of my machines don't do it without effort.
● DHCP and IPv6 evolved concurrently, and 

didn't cross pollinate until pretty late.



  

DHCP Prefix Delegation

● DHCP option for delegation of address space 
for routed subnets downstream of the 
requesting DHCP client.

● It supposedly can work.
● Microsoft supports it when using ICS.
● ISC dhcpv6 supports it.
● Promising, but I'd expect some blood.



  

DHCPv6 vs RA

● Religion.  Different constituents want different 
things.

● Purists hate the DHCP model and 
implementation.  Pragmatists want the purists 
to suggest something that meets their needs, 
as RA doesn't do it yet.

● For example, DNS servers (!!) were only 
recently added to RA.  DHCP has many, many 
standard options.



  

Unique Local Addresses (ULA)

● More or less RFC1918 for IPv6.
● 40 random bits in the prefix
● Much less likely to collide than RFC1918 

addresses when used for private interconnect, 
mergers, etc.

● There's a “registry” where a further hint that a 
prefix is in use can be documented.



  

IPv6 info in DNS

● Works roughly the same as it did in v4: there's 
an address record for forward, and a PTR 
record for reverses.

● Reverses are split by each hex digit.  Use host!
● Forward:
perdition IN AAAA 2001:470:8917:1::1

● Reverse:
$ORIGIN 7.1.9.8.0.7.4.0.1.0.0.2.ip6.arpa.

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0 IN PTR
perdition.linnaean.org.



  

Home Network



  

Home Network

● Router advertisements required configuring 
addresses on the subnets, and starting a 
daemon with no options.  There was a surprise, 
in that all v6 hosts IMMEDIATELY used it.

● Initially, I didn't expose my v6 DNS to the public, 
but eventually I exposed individual services 
over the course of a couple of months.  Nothing 
terribly exciting.



  

IPv6 Connection Methods

● Native; mostly stop here if you can get it.  
Cogent may be an exception.

● Static tunnel providers like Hurricane or Sixxs
● 6to4 (deprecated)
● Teredo; single host only.



  

Static Tunnel Providers

● Hurricane Electric's tunnelbroker.net
● Simple IP Protocol 41 tunnels.
● They hand out /48s with a click.
● Will speak BGP, in ways that are real multi-homing.

● Sixxs
● Requires tunneling software.  Very, very widely 

ported.
● Can traverse most NATs.
● Some POPs only offer /64 prefixes (1 subnet).
● More bureaucratic.



  

Teredo

● Works through typical NATs that will pass UDP 
traffic with the help of a “teredo server”.

● Only provides a single /128 address
● Can directly reach other teredo users over v4.



  

Happy Eyeballs (RFC6555)

● User friendliness algorithm, typically in 
browsers (Chrome, FF)

● Tries V4,V6 connections in parallel, and uses 
whatever finishes first.

● Good: user requests satisfied ASAP.
● Bad: not determinstic when you need to debug.



  

NAT

● Zealot's heads explode at the thought.
● You can get it if you need it.
● There are clever applications of multi-

addressing with both globally unique and ULA 
addresses that reduce need of it.

● Applications like ghetto-multihoming and 
reducing renumbering pain from ISP changes 
are still lacking in a NAT free world.  Multi-
addressing is not a panacea.



  

RFC3484

● Introduces controls for controlling source and 
destination address selection, both v4 and v6

● Hackable in linux as /etc/gai.conf; FreeBSD 
with ip6addrctl

● Implemented on Windows, but the tables are 
not mutable

● Address selection is very important when there 
are many choices



  

Privacy Addresses (RFC4941)

● Generates random, throw away 64 bit interface 
identifiers in addition to “the” interface address.

● Can't hide your subnet, obviously.
● Default on: >= Windows Vista, >= OS-X 10.7
● Available on: XP, OS-X < 10.7, Linux, FreeBSD



  

Secure Neighbor Discovery 
(RFC3971)

● NDP (and v4 arp!) are easy to attack on shared 
networks, even if switched.  I've done so 
against arp, in anger even (comcast dhcp fail).

● 64 bits is enough to do public-key crypto.
● Protects against the comcast fail I once had, as 

the subnet router would have ceased listening 
to the other guy.

● Not exactly common yet, if ever.



  

De-facto address structures

● The address family is flat, like v4 w/ CIDR.
● But in practice, there's structure that makes 

things slightly easier to remember.

2001:470:8917:9:217:f2ff:fe0a:c4e2

Main ARIN PA

Hurricane Electric

Me!

My wired net

64 bit interface ID.
I have yet to memorize one I didn't make myself.



  

De Jure address structure, Teredo
$ teredo-decode 2001:0:53aa:64c:2046:0674:a7e0:4a3e
addr = 2001:0:53aa:64c:2046:0674:a7e0:4a3e
server = 83.170.6.76
client = 88.31.181.193
port = 63883
flags = 
flags_random = 8262 (0x2046)

2001:0 == Teredo
53aa:064c == Teredo Server, 83.170.6.76
2046 == 12 bit nonce + flags; no flags here
0674 == Obfuscated port number (port ^ 0xffff)
a7e0:4a3e == Obfuscated client IPv4 address
             (address ^ 0xffffffff)



  

Neighbor Discovery

● In v6, the arp equivalent is an ICMP protocol, 
making clever use of link local and multicast 
addresses in a way that would be circular on 
v4.

● You don't really notice.
● ...Unless you're writing firewall rules and forget 

to allow it.


	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

