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IPv6 Networks I Have Known

● Setup MIT AI Lab in 1999 with MIT SIPB as 
upstream towards 6bone.  Look ma, I can 
ping6!

● Used 6to4 and Hurricane Electric to run it at 
home in 2007.

● Provisioned Cambridge Bandwidth 
Consortium's (AS10255) coreward BGP, 
colocation subnets, and member tunnels.

● Starting in on my employer.  Next step is 
training.



  

HE Registration



  

HE Tunnel Creation



  

HE Tunnel Creation on OS-X
# Create a generic tunnel interface
ifconfig gif0 create

# What are the v4 tunnel endpoints (local, remote)?
ifconfig gif0 tunnel 18.111.38.249 216.66.22.2

# Assign v6 addresses
ifconfig gif0 inet6 2001:470:7:7e2::2 \ 
    2001:470:7:7e2::1 prefixlen 128

# Tunnel is default route to v6 internet
route -n add -inet6 default 2001:470:7:7e2::1

and from there, it just works, modulo your firewall.  
These are their instructions for this OS.  YOSWV
# Firewall example for ipfw
add 02125 permit ip4 from 216.66.22.2 to \ 
18.111.38.249 proto ipv6 in recv re0
add 03050 permit ip4 from 18.111.38.249 to \ 
216.66.22.2 proto ipv6 out xmit re0



  

You probably already run it
$ ping6 -c 2 -w 10 ff02::1%eth0
PING ff02::1%eth0(ff02::1) 56 data bytes
64 bytes from fe80::2e0:81ff:fe80:b398: icmp_seq=1 
ttl=64 time=0.040 ms
64 bytes from fe80::230:48ff:fe99:5d53: icmp_seq=1 
ttl=64 time=0.070 ms (DUP!)
[...]
64 bytes from fe80::66b9:e8ff:fecd:b084: 
icmp_seq=1 ttl=64 time=0.668 ms (DUP!)
64 bytes from fe80::3e07:54ff:fe62:afe: icmp_seq=1 
ttl=64 time=0.670 ms (DUP!)
64 bytes from fe80::426c:8fff:fe50:67ba: 
icmp_seq=1 ttl=64 time=0.812 ms (DUP!)
^C
--- ff02::1%eth0 ping statistics ---
1 packets transmitted, 1 received, +22 duplicates, 
0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.040/0.279/0.812/0.207 ms



  

Saved from grief by v6

● We recently misconfigured a power control 
box's v4 net.  Apparently unreachable.

● But our switch said it was alive and had a MAC.
● It spoke v6, as revealed by ping6 ff02::1.
● It supported logins via v6.
● Login over v6, fix typo'd address, move on.
● General reset procedure would not have been 

fun, given the critical hosts on the power box.



  

What's Changed Since 2010?

● No more google whitelist.
● Netflix, yahoo, facebook, akamai, wikipedia, etc
● Much more traffic at home
● v6 service available from work's last two ISPs
● Comcast reports 50% of its network is v6 

capable, and is deploying to customers
● TimeWarner is deploying to customers
● T-Mobile has 100% coverage
● Verizon over LTE in some areas



  

Generic v6 algorithm

● Get IPv6 to your border.  Native, tunnel.
● Enable it on the border box you control (firewall, 

frequently).
● But your topology doesn't have to be congruent.
● Number internal interfaces
● Either statically number internal hosts, use RA, 

or play with DHCPv6.
● Put AAAA records in DNS.
● Mail is a good first app, because it's a naturally 

robust design.



  

Why is Comcast eager for v6?

● RFC1918 provides 18 million addresses
● Comcast has 20 million video customers with 

an average of 2.5 set-top boxes per customer 
which need 2 IP addresses per box == 100 
million addresses

● This doesn't account for the network that 
connects these boxes, or their VOIP offering, or 
their internet service.

– Alain Durand at NANOG37
● Amazon, Google, and more have the same 

problem.



  

Programming

● Same old low level socket routines.  Use 
PF_INET6, and struct sockaddr_in6.

● New, multi-protocol, thread-safe host/address 
resolution routines:

gethostbyname → getaddrinfo

gethostbyaddr → getnameinfo
● Your favorite languages probably have 

bindings.
● Where you used one IPv4 socket, you may 

need a socket per address family now.



  

getaddrinfo output
$ getaddrinfo --stream --service http \ 
www.google.com
Resolved host 'www.google.com', service '80'

socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ 
'173.194.75.147:80'
socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ 
'173.194.75.103:80'
socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ 
'173.194.75.99:80'
socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ 
'173.194.75.104:80'
socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ 
'173.194.75.106:80'
socket(AF_INET , SOCK_STREAM, IPPROTO_TCP) + \ 
'173.194.75.105:80'
socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP) + \ 
'[2607:f8b0:400c:c01::6a]:80'

### Output has been wrapped



  

Perl Server Example
use IO::Socket;
use IO::Socket::IP;

my @listener_common = (
    Listen => TRUE,
    LocalPort => $port_number,
    ReuseAddr => TRUE,
    );

$listener6 = IO::Socket::IP->new(
@listener_common,
Domain => PF_INET6,
V6Only => TRUE,
) || die "socket(PF_INET6): $!";

$listener4 = IO::Socket::IP->new(
    @listener_common,
    Domain => PF_INET,
    ) || die "socket(PF_INET): $!";

# Select loop here



  

IPv6 Ups and Downs: Ups

● It's a network protocol.  When it does its job, 
you don't think about it.

● My wife uses it and doesn't notice.
● Can directly address house “internal” machines 

from IPv6 networks.
● >50% of incoming email received over v6.
● google, facebook, yahoo, wikipedia, netflix, 

comcast all running production IPv6.
● My house has exceeded 50% v6 traffic on 

some days. Youtube + Netflix.



  

What's new for the v4 clued

● IPv6 is mostly IPv4 with bigger addresses, 
however:
● Link local addresses
● Extensive use of multicast
● Link scoping to help target the above
● Stateless address auto configuration (SLAAC)
● Router advertisements
● Multiple addresses per interface is typical

● This isn't a complete list, but are the differences 
I see all the time.



  

Bigger Addresses

● 128 bits long, 4 times bigger than IPv4
● Represented in hex, not decimal
● Verbosely represented as 

2001:0db8:b009:0000:0000:0000:0000:006a
● Some tricks to make them smaller, but the real 

world still gives you addresses like 
2001:470:8917:8:216:cbff:feb7:ae2b 



  

Address Compression

● You can leave off leading zeros of digit groups:  
“fd00::0123” and “fd00::123” are equivalent.

● You can compress a run of zeros with “::” 
ONCE, and the run has to be 16 bit aligned.  
For example, the fd00:: example above.  If you 
have “2001:db8:0:0:0:1:0:0”, “2001:db::1:0:0” is 
valid, “2001:db8:0:0:0:1::” is legal, but 
“2001:db8::1::” is not.

● You can use IPv4 notation for the last 32 bits of 
an address, e.g. 2001:db8::192.0.2.255 is legal. 
Same address as 2001:db8::c000:2ff.



  

Prefixes You'll Probably See

v6 Prefix v4 Approx Equiv Notes

:: 0.0.0.0 Unspecified/IN_ADDR_ANY

::1 127.0.0.1 Loopback

::ffff:0.0.0.0/96 v4 mapped onto v6 sockets

2001:db8::/32 192.0.2.0/24 Documentation Prefix

fc00::/7 10/8, 172.16/12, 
192.168/16

Local Unicast (ULA)

fe80::/10 169.254.0.0/16 Link Local

ff00::/8 224.0.0.0/4 Multicast



  

Address Allocation

● Warm and breathing?  You can get a /48 (2.5 
ipv4 internets; 65536 64 bit subnets)

● Residential policy allows /56
● Preference for nibble-aligned delegations for 

operation ease. /36, /40, /44, /48, etc.
● Traditional v4-like PA/PI assignments available.
● Roughly 281 trillion /48s available
● Expect much assesment when 2000::/3 is about 

gone (35 trillion /48s, 2000 per person at 17e9 
people).  I'm guessing it will take a bit.



  

Routable Unicast Space
Prefix Usage

2000::/3 Global unicast

2001:0::/32 Teredo

2001:db8::/32 Documentation Prefix

2002::/16 6to4

3ffe::/16 6bone (deprecated)

● 4000::/3 through c000::/3 are reserved, as are 
several other smaller holes.  We have 5 tries at 
address allocation before we need to do IP over 
again.



  

Link Local Addresses (fe80::/10)

● Like IPv4's 169.254.0.0/16 prefix, but used 
extensively.

● Every single IPv6 interface has one as part of 
configuration.

● Link scoped, meaning the address is relative to 
an interface.  fe80::1 on one link might be a 
different host than fe80::1 on another link.

● Routing protocols often use them.



  

Multicast (ff00::/8)

● IPv6 does away with broadcast entirely.
● ff02::1 is the multicast equivalent of an IPv4 

broadcast.
● Like link local addresses, they require link 

scoping.
● Propagation scoping is encoded in the 4th octet: 

e.g. the “2” in ff02:: addressed packets confines 
them to the link they were sent on (like 
224.0.0.0/24 in IPv4).



  

Link Scoping

● You need to specify an interface for link local 
and multicast addresses.

● Append “%” and an interface name to the 
address.

● For example, “ping6 ff02::1%eth0” should get 
ping responses from everything in eth0's 
broadcast domain.

● Interface names are OS specific.  Windows 
uses integers. 



  

Autoconfiguration

● All hosts can use link local addresses to 
communicate across a single subnet with no 
central planning.

● The main ingredient for inventing unique 
addresses is the EUI-64, a 64 bit hardware 
identifier.  Firewire uses it natively.

● Ethernet MACs can be promoted to EUI-64 by 
inserting “ff:fe” into the middle, after the OUI. 

● Only works with /64 prefixes.



  

Router Advertisements (RA)

● Routers tell clients the prefixes in use and 
clients build themselves addresses with them.

● Clients route to the routers they see, even if it's 
a broken laptop somebody has been 
experimenting with.

● This isn't anything like DHCP.



  

DHCPv6

● There is one.
● It's late to the party.
● Support is spotty.
● MS Vista or higher, OS-X >= 10.7.
● Haven't played with it yet; SLAAC works, and 

half of my machines don't do it without effort.
● DHCP and IPv6 evolved concurrently, and 

didn't cross pollinate until pretty late.



  

DHCP Prefix Delegation

● DHCP option for delegation of address space 
for routed subnets downstream of the 
requesting DHCP client.

● It supposedly can work.
● Microsoft supports it when using ICS.
● ISC dhcpv6 supports it.
● Promising, but I'd expect some blood.



  

DHCPv6 vs RA

● Religion.  Different constituents want different 
things.

● Purists hate the DHCP model and 
implementation.  Pragmatists want the purists 
to suggest something that meets their needs, 
as RA doesn't do it yet.

● For example, DNS servers (!!) were only 
recently added to RA.  DHCP has many, many 
standard options.



  

Unique Local Addresses (ULA)

● More or less RFC1918 for IPv6.
● 40 random bits in the prefix
● Much less likely to collide than RFC1918 

addresses when used for private interconnect, 
mergers, etc.

● There's a “registry” where a further hint that a 
prefix is in use can be documented.



  

IPv6 info in DNS

● Works roughly the same as it did in v4: there's 
an address record for forward, and a PTR 
record for reverses.

● Reverses are split by each hex digit.  Use host!
● Forward:
perdition IN AAAA 2001:470:8917:1::1

● Reverse:
$ORIGIN 7.1.9.8.0.7.4.0.1.0.0.2.ip6.arpa.

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0 IN PTR
perdition.linnaean.org.



  

Home Network



  

Home Network

● Router advertisements required configuring 
addresses on the subnets, and starting a 
daemon with no options.  There was a surprise, 
in that all v6 hosts IMMEDIATELY used it.

● Initially, I didn't expose my v6 DNS to the public, 
but eventually I exposed individual services 
over the course of a couple of months.  Nothing 
terribly exciting.



  

IPv6 Connection Methods

● Native; mostly stop here if you can get it.  
Cogent may be an exception.

● Static tunnel providers like Hurricane or Sixxs
● 6to4 (deprecated)
● Teredo; single host only.



  

Static Tunnel Providers

● Hurricane Electric's tunnelbroker.net
● Simple IP Protocol 41 tunnels.
● They hand out /48s with a click.
● Will speak BGP, in ways that are real multi-homing.

● Sixxs
● Requires tunneling software.  Very, very widely 

ported.
● Can traverse most NATs.
● Some POPs only offer /64 prefixes (1 subnet).
● More bureaucratic.



  

Teredo

● Works through typical NATs that will pass UDP 
traffic with the help of a “teredo server”.

● Only provides a single /128 address
● Can directly reach other teredo users over v4.



  

Happy Eyeballs (RFC6555)

● User friendliness algorithm, typically in 
browsers (Chrome, FF)

● Tries V4,V6 connections in parallel, and uses 
whatever finishes first.

● Good: user requests satisfied ASAP.
● Bad: not determinstic when you need to debug.



  

NAT

● Zealot's heads explode at the thought.
● You can get it if you need it.
● There are clever applications of multi-

addressing with both globally unique and ULA 
addresses that reduce need of it.

● Applications like ghetto-multihoming and 
reducing renumbering pain from ISP changes 
are still lacking in a NAT free world.  Multi-
addressing is not a panacea.



  

RFC3484

● Introduces controls for controlling source and 
destination address selection, both v4 and v6

● Hackable in linux as /etc/gai.conf; FreeBSD 
with ip6addrctl

● Implemented on Windows, but the tables are 
not mutable

● Address selection is very important when there 
are many choices



  

Privacy Addresses (RFC4941)

● Generates random, throw away 64 bit interface 
identifiers in addition to “the” interface address.

● Can't hide your subnet, obviously.
● Default on: >= Windows Vista, >= OS-X 10.7
● Available on: XP, OS-X < 10.7, Linux, FreeBSD



  

Secure Neighbor Discovery 
(RFC3971)

● NDP (and v4 arp!) are easy to attack on shared 
networks, even if switched.  I've done so 
against arp, in anger even (comcast dhcp fail).

● 64 bits is enough to do public-key crypto.
● Protects against the comcast fail I once had, as 

the subnet router would have ceased listening 
to the other guy.

● Not exactly common yet, if ever.



  

De-facto address structures

● The address family is flat, like v4 w/ CIDR.
● But in practice, there's structure that makes 

things slightly easier to remember.

2001:470:8917:9:217:f2ff:fe0a:c4e2

Main ARIN PA

Hurricane Electric

Me!

My wired net

64 bit interface ID.
I have yet to memorize one I didn't make myself.



  

De Jure address structure, Teredo
$ teredo-decode 2001:0:53aa:64c:2046:0674:a7e0:4a3e
addr = 2001:0:53aa:64c:2046:0674:a7e0:4a3e
server = 83.170.6.76
client = 88.31.181.193
port = 63883
flags = 
flags_random = 8262 (0x2046)

2001:0 == Teredo
53aa:064c == Teredo Server, 83.170.6.76
2046 == 12 bit nonce + flags; no flags here
0674 == Obfuscated port number (port ^ 0xffff)
a7e0:4a3e == Obfuscated client IPv4 address
             (address ^ 0xffffffff)



  

Neighbor Discovery

● In v6, the arp equivalent is an ICMP protocol, 
making clever use of link local and multicast 
addresses in a way that would be circular on 
v4.

● You don't really notice.
● ...Unless you're writing firewall rules and forget 

to allow it.
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