
MobileNetV2: Inverted Residuals and Linear Bottlenecks

Mark Sandler Andrew Howard Menglong Zhu Andrey Zhmoginov Liang-Chieh Chen

Google Inc.

{sandler, howarda, menglong, azhmogin, lcchen}@google.com

Abstract

In this paper we describe a new mobile architecture,

MobileNetV2, that improves the state of the art perfor-

mance of mobile models on multiple tasks and bench-

marks as well as across a spectrum of different model

sizes. We also describe efficient ways of applying these

mobile models to object detection in a novel framework

we call SSDLite. Additionally, we demonstrate how

to build mobile semantic segmentation models through

a reduced form of DeepLabv3 which we call Mobile

DeepLabv3.

is based on an inverted residual structure where

the shortcut connections are between the thin bottle-

neck layers. The intermediate expansion layer uses

lightweight depthwise convolutions to filter features as

a source of non-linearity. Additionally, we find that it is

important to remove non-linearities in the narrow layers

in order to maintain representational power. We demon-

strate that this improves performance and provide an in-

tuition that led to this design.

Finally, our approach allows decoupling of the in-

put/output domains from the expressiveness of the trans-

formation, which provides a convenient framework for

further analysis. We measure our performance on

ImageNet [1] classification, COCO object detection [2],

VOC image segmentation [3]. We evaluate the trade-offs

between accuracy, and number of operations measured

by multiply-adds (MAdd), as well as actual latency, and

the number of parameters.

1. Introduction

Neural networks have revolutionized many areas of

machine intelligence, enabling superhuman accuracy for

challenging image recognition tasks. However, the drive

to improve accuracy often comes at a cost: modern state

of the art networks require high computational resources

beyond the capabilities of many mobile and embedded

applications.

This paper introduces a new neural network architec-

ture that is specifically tailored for mobile and resource

constrained environments. Our network pushes the state

of the art for mobile tailored computer vision models,

by significantly decreasing the number of operations and

memory needed while retaining the same accuracy.

Our main contribution is a novel layer module: the

inverted residual with linear bottleneck. This mod-

ule takes as an input a low-dimensional compressed

representation which is first expanded to high dimen-

sion and filtered with a lightweight depthwise convo-

lution. Features are subsequently projected back to a

low-dimensional representation with a linear convolu-

tion. The official implementation is available as part of

TensorFlow-Slim model library in [4].

This module can be efficiently implemented using

standard operations in any modern framework and al-

lows our models to beat state of the art along multiple

performance points using standard benchmarks. Fur-

thermore, this convolutional module is particularly suit-

able for mobile designs, because it allows to signifi-

cantly reduce the memory footprint needed during in-

ference by never fully materializing large intermediate

tensors. This reduces the need for main memory access

in many embedded hardware designs, that provide small

amounts of very fast software controlled cache memory.

2. Related Work

Tuning deep neural architectures to strike an optimal

balance between accuracy and performance has been

an area of active research for the last several years.

Both manual architecture search and improvements in

training algorithms, carried out by numerous teams has

lead to dramatic improvements over early designs such

as AlexNet [5], VGGNet [6], GoogLeNet [7]. , and

ResNet [8]. Recently there has been lots of progress

in algorithmic architecture exploration included hyper-

parameter optimization [9, 10, 11] as well as various

4510

methods of network pruning [12, 13, 14, 15, 16, 17] and

connectivity learning [18, 19]. A substantial amount of

work has also been dedicated to changing the connectiv-

ity structure of the internal convolutional blocks such as

in ShuffleNet [20] or introducing sparsity [21] and oth-

ers [22].

Recently, [23, 24, 25, 26], opened up a new direc-

tion of bringing optimization methods including genetic

algorithms and reinforcement learning to architectural

search. However one drawback is that the resulting net-

works end up very complex. In this paper, we pursue the

goal of developing better intuition about how neural net-

works operate and use that to guide the simplest possible

network design. Our approach should be seen as compli-

mentary to the one described in [23] and related work.

In this vein our approach is similar to those taken by

[20, 22] and allows to further improve the performance,

while providing a glimpse on its internal operation. Our

network design is based on MobileNetV1 [27]. It re-

tains its simplicity and does not require any special op-

erators while significantly improves its accuracy, achiev-

ing state of the art on multiple image classification and

detection tasks for mobile applications.

3. Preliminaries, discussion and intuition

3.1. Depthwise Separable Convolutions

Depthwise Separable Convolutions are a key build-

ing block for many efficient neural network architectures

[27, 28, 20] and we use them in the present work as well.

The basic idea is to replace a full convolutional opera-

tor with a factorized version that splits convolution into

two separate layers. The first layer is called a depthwise

convolution, it performs lightweight filtering by apply-

ing a single convolutional filter per input channel. The

second layer is a 1 × 1 convolution, called a pointwise

convolution, which is responsible for building new fea-

tures through computing linear combinations of the in-

put channels.

Standard convolution takes an hi × wi × di in-

put tensor Li, and applies convolutional kernel K ∈
Rk×k×di×dj to produce an hi × wi × dj output ten-

sor Lj . Standard convolutional layers have the compu-

tational cost of hi · wi · di · dj · k · k.

Depthwise separable convolutions are a drop-in re-

placement for standard convolutional layers. Empiri-

cally they work almost as well as regular convolutions

but only cost:

hi · wi · di(k
2 + dj) (1)

which is the sum of the depthwise and 1 × 1 pointwise

convolutions. Effectively depthwise separable convolu-

tion reduces computation compared to traditional layers

by almost a factor of k21. MobileNetV2 uses k = 3
(3× 3 depthwise separable convolutions) so the compu-

tational cost is 8 to 9 times smaller than that of standard

convolutions at only a small reduction in accuracy [27].

3.2. Linear Bottlenecks

Consider a deep neural network consisting of n layers

Li each of which has an activation tensor of dimensions

hi × wi × di. Throughout this section we will be dis-

cussing the basic properties of these activation tensors,

which we will treat as containers of hi × wi “pixels”

with di dimensions. Informally, for an input set of real

images, we say that the set of layer activations (for any

layer Li) forms a “manifold of interest”. It has been long

assumed that manifolds of interest in neural networks

could be embedded in low-dimensional subspaces. In

other words, when we look at all individual d-channel

pixels of a deep convolutional layer, the information

encoded in those values actually lie in some manifold,

which in turn is embeddable into a low-dimensional sub-

space2.

At a first glance, such a fact could then be captured

and exploited by simply reducing the dimensionality of

a layer thus reducing the dimensionality of the oper-

ating space. This has been successfully exploited by

MobileNetV1 [27] to effectively trade off between com-

putation and accuracy via a width multiplier parameter,

and has been incorporated into efficient model designs

of other networks as well [20]. Following that intuition,

the width multiplier approach allows one to reduce the

dimensionality of the activation space until the mani-

fold of interest spans this entire space. However, this

intuition breaks down when we recall that deep convo-

lutional neural networks actually have non-linear per co-

ordinate transformations, such as ReLU. For example,

ReLU applied to a line in 1D space produces a ’ray’,

where as in Rn space, it generally results in a piece-wise

linear curve with n-joints.

It is easy to see that in general if a result of a layer

transformation ReLU(Bx) has a non-zero volume S,

the points mapped to interiorS are obtained via a lin-

ear transformation B of the input, thus indicating that

the part of the input space corresponding to the full di-

mensional output, is limited to a linear transformation.

In other words, deep networks only have the power of

a linear classifier on the non-zero volume part of the

1more precisely, by a factor k2dj/(k
2 + dj)

2Note that dimensionality of the manifold differs from the dimen-

sionality of a subspace that could be embedded via a linear transfor-

mation.

4511

Input Output/dim=2 Output/dim=3 Output/dim=5 Output/dim=15 Output/dim=30

Figure 1: Examples of ReLU transformations of

low-dimensional manifolds embedded in higher-dimensional

spaces. In these examples the initial spiral is embedded into

an n-dimensional space using random matrix T followed by

ReLU, and then projected back to the 2D space using T−1.

In examples above n = 2, 3 result in information loss where

certain points of the manifold collapse into each other, while

for n = 15 to 30 the transformation is highly non-convex.

(a) Regular (b) Separable

(c) Separable with linear

bottleneck

(d) Bottleneck with ex-

pansion layer

Figure 2: Evolution of separable convolution blocks. The

diagonally hatched texture indicates layers that do not contain

non-linearities. The last (lightly colored) layer indicates the

beginning of the next block. Note: 2d and 2c are equivalent

blocks when stacked. Best viewed in color.

output domain. We refer to supplemental material for

a more formal statement.

On the other hand, when ReLU collapses the chan-

nel, it inevitably loses information in that channel. How-

ever if we have lots of channels, and there is a a structure

in the activation manifold that information might still be

preserved in the other channels. In supplemental ma-

terials, we show that if the input manifold can be em-

bedded into a significantly lower-dimensional subspace

of the activation space then the ReLU transformation

preserves the information while introducing the needed

complexity into the set of expressible functions.

To summarize, we have highlighted two properties

that are indicative of the requirement that the manifold

of interest should lie in a low-dimensional subspace of

the higher-dimensional activation space:

1. If the manifold of interest remains non-zero vol-

ume after ReLU transformation, it corresponds to

a linear transformation.

(a) Residual block (b) Inverted residual block

Figure 3: The difference between residual block [8, 30]

and inverted residual. Diagonally hatched layers do not

use non-linearities. We use thickness of each block to

indicate its relative number of channels. Note how clas-

sical residuals connects the layers with high number of

channels, whereas the inverted residuals connect the bot-

tlenecks. Best viewed in color.

2. ReLU is capable of preserving complete informa-

tion about the input manifold, but only if the input

manifold lies in a low-dimensional subspace of the

input space.

These two insights provide us with an empirical hint

for optimizing existing neural architectures: assuming

the manifold of interest is low-dimensional we can cap-

ture this by inserting linear bottleneck layers into the

convolutional blocks. Experimental evidence suggests

that using linear layers is crucial as it prevents non-

linearities from destroying too much information. In

Section 6, we show empirically that using non-linear

layers in bottlenecks indeed hurts the performance by

several percent, further validating our hypothesis3. We

note that similar reports where non-linearity was helped

were reported in [29] where non-linearity was removed

from the input of the traditional residual block and that

lead to improved performance on CIFAR dataset.

For the remainder of this paper we will be utilizing

bottleneck convolutions. We will refer to the ratio be-

tween the size of the input bottleneck and the inner size

as the expansion ratio.

3.3. Inverted residuals

The bottleneck blocks appear similar to residual

block where each block contains an input followed

by several bottlenecks then followed by expansion [8].

However, inspired by the intuition that the bottlenecks

actually contain all the necessary information, while an

expansion layer acts merely as an implementation detail

that accompanies a non-linear transformation of the ten-

sor, we use shortcuts directly between the bottlenecks.

3We note that in the presence of shortcuts the information loss is

actually less strong.

4512

Figure 3 provides a schematic visualization of the differ-

ence in the designs. The motivation for inserting short-

cuts is similar to that of classical residual connections:

we want to improve the ability of a gradient to propagate

across multiplier layers. However, the inverted design is

considerably more memory efficient (see Section 5 for

details), as well as works slightly better in our experi-

ments.

Running time and parameter count for bottleneck

convolution The basic implementation structure is il-

lustrated in Table 1. For a block of size h × w, ex-

pansion factor t and kernel size k with d′ input chan-

nels and d′′ output channels, the total number of multi-

ply add required is h · w · d′ · t(d′ + k2 + d′′). Com-

pared with (1) this expression has an extra term, as in-

deed we have an extra 1 × 1 convolution, however the

nature of our networks allows us to utilize much smaller

input and output dimensions. In Table 3 we compare the

needed sizes for each resolution between MobileNetV1,

MobileNetV2 and ShuffleNet.

3.4. Information flow interpretation

One interesting property of our architecture is that it

provides a natural separation between the input/output

domains of the building blocks (bottleneck layers), and

the layer transformation – that is a non-linear function

that converts input to the output. The former can be seen

as the capacity of the network at each layer, whereas the

latter as the expressiveness. This is in contrast with tra-

ditional convolutional blocks, both regular and separa-

ble, where both expressiveness and capacity are tangled

together and are functions of the output layer depth.

In particular, in our case, when inner layer depth

is 0 the underlying convolution is the identity function

thanks to the shortcut connection. When the expansion

ratio is smaller than 1, this is a classical residual con-

volutional block [8, 30]. However, for our purposes we

show that expansion ratio greater than 1 is the most use-

ful.

This interpretation allows us to study the expressive-

ness of the network separately from its capacity and we

believe that further exploration of this separation is war-

ranted to provide a better understanding of the network

properties.

4. Model Architecture

Now we describe our architecture in detail. As dis-

cussed in the previous section the basic building block

is a bottleneck depth-separable convolution with resid-

uals. The detailed structure of this block is shown in

Input Operator Output

h× w × k 1x1 conv2d , ReLU6 h× w × (tk)
h× w × tk 3x3 dwise s=s, ReLU6 h

s
× w

s
× (tk)

h
s
× w

s
× tk linear 1x1 conv2d h

s
× w

s
× k′

Table 1: Bottleneck residual block transforming from k
to k′ channels, with stride s, and expansion factor t.

Table 1. The architecture of MobileNetV2 contains the

initial fully convolution layer with 32 filters, followed

by 19 residual bottleneck layers described in the Ta-

ble 2. We use ReLU6 as the non-linearity because of

its robustness when used with low-precision computa-

tion [27]. We always use kernel size 3× 3 as is standard

for modern networks, and utilize dropout and batch nor-

malization during training.

With the exception of the first layer, we use constant

expansion rate throughout the network. In our experi-

ments we find that expansion rates between 5 and 10 re-

sult in nearly identical performance curves, with smaller

networks being better off with slightly smaller expan-

sion rates and larger networks having slightly better per-

formance with larger expansion rates.

For all our main experiments we use expansion factor

of 6 applied to the size of the input tensor. For example,

for a bottleneck layer that takes 64-channel input tensor

and produces a tensor with 128 channels, the intermedi-

ate expansion layer is then 64 · 6 = 384 channels.

Trade-off hyper parameters As in [27] we tailor our

architecture to different performance points, by using

the input image resolution and width multiplier as tun-

able hyper parameters, that can be adjusted depending

on desired accuracy/performance trade-offs. Our pri-

mary network (width multiplier 1, 224 × 224), has a

computational cost of 300 million multiply-adds and

uses 3.4 million parameters. We explore the perfor-

mance trade offs, for input resolutions from 96 to 224,

and width multipliers of 0.35 to 1.4. The network com-

putational cost ranges from 7 multiply adds to 585M

MAdds, while the model size vary between 1.7M and

6.9M parameters.

One minor implementation difference, with [27] is

that for multipliers less than one, we apply width multi-

plier to all layers except the very last convolutional layer.

This improves performance for smaller models.

4513

Input Operator t c n s

2242 × 3 conv2d - 32 1 2

1122 × 32 bottleneck 1 16 1 1

1122 × 16 bottleneck 6 24 2 2

562 × 24 bottleneck 6 32 3 2

282 × 32 bottleneck 6 64 4 2

142 × 64 bottleneck 6 96 3 1

142 × 96 bottleneck 6 160 3 2

72 × 160 bottleneck 6 320 1 1

72 × 320 conv2d 1x1 - 1280 1 1

72 × 1280 avgpool 7x7 - - 1 -

1× 1× 1280 conv2d 1x1 - k -

Table 2: MobileNetV2 : Each line describes a sequence

of 1 or more identical (modulo stride) layers, repeated

n times. All layers in the same sequence have the same

number c of output channels. The first layer of each

sequence has a stride s and all others use stride 1. All

spatial convolutions use 3 × 3 kernels. The expansion

factor t is always applied to the input size as described

in Table 1.

Size MobileNetV1 MobileNetV2 ShuffleNet

(2x,g=3)

112x112 1/O(1) 1/O(1) 1/O(1)

56x56 128/800 32/200 48/300

28x28 256/400 64/100 400/600K

14x14 512/200 160/62 800/310

7x7 1024/199 320/32 1600/156

1x1 1024/2 1280/2 1600/3

max 800K 200K 600K

Table 3: The max number of channels/memory (in

Kb) that needs to be materialized at each spatial res-

olution for different architectures. We assume 16-bit

floats for activations. For ShuffleNet, we use 2x, g =
3 that matches the performance of MobileNetV1 and

MobileNetV2. For the first layer of MobileNetV2 and

ShuffleNet we can employ the trick described in Sec-

tion 5 to reduce memory requirement. Even though

ShuffleNet employs bottlenecks elsewhere, the non-

bottleneck tensors still need to be materialized due to the

presence of shortcuts between non-bottleneck tensors.

5. Implementation Notes

5.1. Memory efficient inference

The inverted residual bottleneck layers allow a partic-

ularly memory efficient implementation which is very

important for mobile applications. A standard effi-

cient implementation of inference that uses for instance

(a) NasNet[23]

input

Dwise 3x3,

stride=s, Relu6

conv 1x1, Relu6

(b) MobileNet[27]

(c) ShuffleNet [20]

Conv 1x1, Relu6

Dwise 3x3, Relu6

input

conv 1x1, Linear

Add

Conv 1x1, Relu6

Dwise 3x3,

stride=2, Relu6

input

conv 1x1, Linear

Stride=1 block Stride=2 block

(d) Mobilenet V2

Figure 4: Comparison of convolutional blocks for dif-

ferent architectures. ShuffleNet uses Group Convolu-

tions [20] and shuffling, it also uses conventional resid-

ual approach where inner blocks are narrower than out-

put. ShuffleNet and NasNet illustrations are from re-

spective papers.

TensorFlow[31] or Caffe [32], builds a directed acyclic

compute hypergraph G, consisting of edges represent-

ing the operations and nodes representing tensors of in-

termediate computation. The computation is scheduled

in order to minimize the total number of tensors that

needs to be stored in memory. In the most general case,

it searches over all plausible computation orders Σ(G)
and picks the one that minimizes

M(G) = min
π∈Σ(G)

max
i∈1..n





∑

A∈R(i,π,G)

|A|



+ size(πi).

where R(i, π,G) is the list of intermediate tensors that

are connected to any of πi . . . πn nodes, |A| represents

the size of the tensor A and size(i) is the total amount

of memory needed for internal storage during operation

i.

For graphs that have only trivial parallel structure

(such as residual connection), there is only one non-

trivial feasible computation order, and thus the total

amount and a bound on the memory needed for infer-

4514

ence on compute graph G can be simplified:

M(G) = max
op∈G





∑

A∈opinp

|A|+
∑

B∈opout

|B|+ |op|





(2)

Or to restate, the amount of memory is simply the max-

imum total size of combined inputs and outputs across

all operations. In what follows we show that if we treat

a bottleneck residual block as a single operation (and

treat inner convolution as a disposable tensor), the total

amount of memory would be dominated by the size of

bottleneck tensors, rather than the size of tensors that are

internal to bottleneck (and much larger).

Bottleneck Residual Block A bottleneck block oper-

ator F(x) shown in Figure 3b can be expressed as a

composition of three operators F(x) = [A ◦ N ◦ B]x,

where A is a linear transformation A : Rs×s×k →
Rs×s×n, N is a non-linear per-channel transformation:

N : Rs×s×n → Rs′×s′×n, and B is again a linear

transformation to the output domain: B : Rs′×s′×n →
Rs′×s′×k′

.

For our networks N = ReLU6 ◦ dwise ◦ ReLU6 ,

but the results apply to any per-channel transformation.

Suppose the size of the input domain is |x| and the size

of the output domain is |y|, then the memory required

to compute F (X) can be as low as |s2k| + |s′2k′| +
O(max(s2, s′2)).

The algorithm is based on the fact that the inner ten-

sor I can be represented as concatenation of t tensors, of

size n/t each and our function can then be represented

as

F(x) =
t

∑

i=1

(Ai ◦N ◦Bi)(x)

by accumulating the sum, we only require one interme-

diate block of size n/t to be kept in memory at all times.

Using n = t we end up having to keep only a single

channel of the intermediate representation at all times.

The two constraints that enabled us to use this trick is

(a) the fact that the inner transformation (which includes

non-linearity and depthwise) is per-channel, and (b) the

consecutive non-per-channel operators have significant

ratio of the input size to the output. For most of the tra-

ditional neural networks, such trick would not produce a

significant improvement.

We note that, the number of multiply-adds opera-

tors needed to compute F (X) using t-way split is in-

dependent of t, however in existing implementations we

find that replacing one matrix multiplication with sev-

eral smaller ones hurts runtime performance due to in-

7.5 10 15 20 30 40 50 75 100 150 200 300 400 500 600

Multiply-Adds, Millions

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

A
cc

u
ra

cy
,
T
o
p
 1

,
%

V2 1.0

V2 1.496x96

128x128

160x160

192x192

224x224

NasNet

MobileNetV1

ShuffleNet

Figure 5: Performance curve of MobileNetV2 vs

MobileNetV1, ShuffleNet, NAS. For our networks we

use multipliers 0.35, 0.5, 0.75, 1.0 for all resolutions,

and additional 1.4 for for 224. Best viewed in color.

0 1 2 3 4 5 6 7
Step, millions

66

67

68

69

70

71

72

T
o
p
 1

 A
cc

u
ra

cy

Linear botleneck

Relu6 in bottleneck

(a) Impact of non-linearity in

the bottleneck layer.

0 1 2 3 4 5 6 7
Step, millions

66

67

68

69

70

71

72

T
o
p
 1

 A
cc

u
ra

cy

Shortcut between bottlenecks

Shortcut between expansions

No residual

(b) Impact of variations in

residual blocks.

Figure 6: The impact of non-linearities and various

types of shortcut (residual) connections.

creased cache misses. We find that this approach is the

most helpful to be used with t being a small constant

between 2 and 5. It significantly reduces the memory

requirement, but still allows one to utilize most of the ef-

ficiencies gained by using highly optimized matrix mul-

tiplication and convolution operators provided by deep

learning frameworks. It remains to be seen if special

framework level optimization may lead to further run-

time improvements.

6. Experiments

6.1. ImageNet Classification

Training setup We train our models using

TensorFlow[31]. We use the standard RMSPropOp-

timizer with both decay and momentum set to 0.9.

We use batch normalization after every layer, and the

standard weight decay is set to 0.00004. Following

MobileNetV1[27] setup we use initial learning rate of

0.045, and learning rate decay rate of 0.98 per epoch.

We use 16 GPU asynchronous workers, and a batch size

of 96.

4515

Results We compare our networks against

MobileNetV1, ShuffleNet and NASNet-A models.

The statistics of a few selected models is shown in

Table 4 with the full performance graph shown in

Figure 5.

6.2. Object Detection

We evaluate and compare the performance of

MobileNetV2 and MobileNetV1 as feature extractors

[33] for object detection with a modified version of the

Single Shot Detector (SSD) [34] on COCO dataset [2].

We also compare to YOLOv2 [35] and original SSD

(with VGG-16 [6] as base network) as baselines. We do

not compare performance with other architectures such

as Faster-RCNN [36] and RFCN [37] since our focus is

on mobile/real-time models.

SSDLite: In this paper, we introduce a mobile

friendly variant of regular SSD. We replace all the regu-

lar convolutions with separable convolutions (depthwise

followed by 1 × 1 projection) in SSD prediction lay-

ers. This design is in line with the overall design of

MobileNets and is seen to be much more computation-

ally efficient. We call this modified version SSDLite.

Compared to regular SSD, SSDLite dramatically re-

duces both parameter count and computational cost as

shown in Table 5.

For MobileNetV1, we follow the setup in [33]. For

MobileNetV2, the first layer of SSDLite is attached to

the expansion of layer 15 (with output stride of 16). The

second and the rest of SSDLite layers are attached on top

of the last layer (with output stride of 32). This setup is

consistent with MobileNetV1 as all layers are attached

to the feature map of the same output strides.

Network Top 1 Params MAdds CPU

MobileNetV1 70.6 4.2M 575M 113ms

ShuffleNet (1.5) 71.5 3.4M 292M -

ShuffleNet (x2) 73.7 5.4M 524M -

NasNet-A 74.0 5.3M 564M 183ms

MobileNetV2 72.0 3.4M 300M 75ms

MobileNetV2 (1.4) 74.7 6.9M 585M 143ms

Table 4: Performance on ImageNet, comparison for dif-

ferent networks. As is common practice for ops, we

count the total number of Multiply-Adds. In the last

column we report running time in milliseconds (ms) for

a single large core of the Google Pixel 1 phone (using

TF-Lite). We do not report ShuffleNet numbers as effi-

cient group convolutions and shuffling are not yet sup-

ported.

Params MAdds

SSD[34] 14.8M 1.25B

SSDLite 2.1M 0.35B

Table 5: Comparison of the size and the computa-

tional cost between SSD and SSDLite configured with

MobileNetV2 and making predictions for 80 classes.

Network mAP Params MAdd CPU

SSD300[34] 23.2 36.1M 35.2B -

SSD512[34] 26.8 36.1M 99.5B -

YOLOv2[35] 21.6 50.7M 17.5B -

MNet V1 + SSDLite 22.2 5.1M 1.3B 270ms

MNet V2 + SSDLite 22.1 4.3M 0.8B 200ms

Table 6: Performance comparison of MobileNetV2 +

SSDLite and other realtime detectors on the COCO

dataset object detection task. MobileNetV2 + SSDLite

achieves competitive accuracy with significantly fewer

parameters and smaller computational complexity. All

models are trained on trainval35k and evaluated on

test-dev. SSD/YOLOv2 numbers are from [35]. The

running time is reported for the large core of the Google

Pixel 1 phone, using an internal version of the TF-Lite

engine.

Both MobileNet models are trained and evalu-

ated with Open Source TensorFlow Object Detection

API [38]. The input resolution of both models is 320 ×
320. We benchmark and compare both mAP (COCO

challenge metrics), number of parameters and number

of Multiply-Adds. The results are shown in Table 6.

MobileNetV2 SSDLite is not only the most efficient

model, but also the most accurate of the three. No-

tably, MobileNetV2 SSDLite is 20× more efficient and

10× smaller while still outperforms YOLOv2 on COCO

dataset.

6.3. Semantic Segmentation

In this section, we compare MobileNetV1 and

MobileNetV2 models used as feature extractors with

DeepLabv3 [39] for the task of mobile semantic seg-

mentation. DeepLabv3 adopts atrous convolution [40,

41, 42], a powerful tool to explicitly control the reso-

lution of computed feature maps, and builds five paral-

lel heads including (a) Atrous Spatial Pyramid Pooling

module (ASPP) [43] containing three 3 × 3 convolu-

tions with different atrous rates, (b) 1 × 1 convolution

head, and (c) Image-level features [44]. We denote by

4516

output stride the ratio of input image spatial resolution

to final output resolution, which is controlled by apply-

ing the atrous convolution properly. For semantic seg-

mentation, we usually employ output stride = 16 or 8
for denser feature maps. We conduct the experiments

on the PASCAL VOC 2012 dataset [3], with extra anno-

tated images from [45] and evaluation metric mIOU.

To build a mobile model, we experimented with three

design variations: (1) different feature extractors, (2)

simplifying the DeepLabv3 heads for faster computa-

tion, and (3) different inference strategies for boost-

ing the performance. Our results are summarized in

Table 7. We have observed that: (a) the inference

strategies, including multi-scale inputs and adding left-

right flipped images, significantly increase the MAdds

and thus are not suitable for on-device applications,

(b) using output stride = 16 is more efficient than

output stride = 8, (c) MobileNetV1 is already a pow-

erful feature extractor and only requires about 4.9− 5.7
times fewer MAdds than ResNet-101 [8] (e.g., mIOU:

78.56 vs 82.70, and MAdds: 941.9B vs 4870.6B), (d)

it is more efficient to build DeepLabv3 heads on top of

the second last feature map of MobileNetV2 than on the

original last-layer feature map, since the second to last

feature map contains 320 channels instead of 1280, and

by doing so, we attain similar performance, but require

about 2.5 times fewer operations than the MobileNetV1

counterparts, and (e) DeepLabv3 heads are computa-

tionally expensive and removing the ASPP module sig-

nificantly reduces the MAdds with only a slight perfor-

mance degradation. In the end of the Table 7, we identify

a potential candidate for on-device applications (in bold

face), which attains 75.32% mIOU and only requires

2.75B MAdds.

6.4. Ablation study

Inverted residual connections. The importance of

residual connection has been studied extensively [8,

30, 46]. The new result reported in this paper is that

the shortcut connecting bottleneck perform better than

shortcuts connecting the expanded layers (see Figure 6b

for comparison).

Importance of linear bottlenecks. The linear bottle-

neck models are strictly less powerful than models with

non-linearities, because the activations can always op-

erate in linear regime with appropriate changes to bi-

ases and scaling. However our experiments shown in

Figure 6a indicate that linear bottlenecks improve per-

formance, providing support that non-linearity destroys

information in low-dimensional space.

Network OS ASPP MF mIOU Params MAdds

MNet V1 16 X 75.29 11.15M 14.25B

8 X X 78.56 11.15M 941.9B

MNet V2* 16 X 75.70 4.52M 5.8B

8 X X 78.42 4.52M 387B

MNet V2* 16 75.32 2.11M 2.75B

8 X 77.33 2.11M 152.6B

ResNet-101 16 X 80.49 58.16M 81.0B

8 X X 82.70 58.16M 4870.6B

Table 7: MobileNet + DeepLabv3 inference strategy

on the PASCAL VOC 2012 validation set. MNet

V2*: Second last feature map is used for DeepLabv3

heads, which includes (1) Atrous Spatial Pyramid Pool-

ing (ASPP) module, and (2) 1 × 1 convolution as well

as image-pooling feature. OS: output stride that con-

trols the output resolution of the segmentation map. MF:

Multi-scale and left-right flipped inputs during test. All

of the models have been pretrained on COCO. The po-

tential candidate for on-device applications is shown in

bold face. PASCAL images have dimension 512 × 512
and atrous convolution allows us to control output fea-

ture resolution without increasing the number of param-

eters.

7. Conclusions and future work

We described a very simple network architecture that

allowed us to build a family of highly efficient mobile

models. Our basic building unit, has several proper-

ties that make it particularly suitable for mobile appli-

cations. It allows very memory-efficient inference and

relies utilize standard operations present in all neural

frameworks.

For the ImageNet dataset, our architecture improves

the state of the art for wide range of performance points.

For object detection task, our network outperforms

state-of-art realtime detectors on COCO dataset both in

terms of accuracy and model complexity. Notably, our

architecture combined with the SSDLite detection mod-

ule is 20× less computation and 10× less parameters

than YOLOv2.

On the theoretical side: the proposed convolutional

block has a unique property that allows to separate the

network expressiviness (encoded by expansion layers)

from its capacity (encoded by bottleneck inputs). Ex-

ploring this is an important direction for future research.

Acknowledgments We would like to thank Matt

Streeter and Sergey Ioffe for their helpful feedback and

discussion.

4517

References

[1] Olga Russakovsky, Jia Deng, Hao Su, Jonathan

Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael

Bernstein, Alexander C. Berg, and Li Fei-Fei. Im-

agenet large scale visual recognition challenge.

Int. J. Comput. Vision, 115(3):211–252, December

2015. 1

[2] Tsung-Yi Lin, Michael Maire, Serge Belongie,

James Hays, Pietro Perona, Deva Ramanan, Piotr

Dollár, and C Lawrence Zitnick. Microsoft COCO:

Common objects in context. In ECCV, 2014. 1, 7

[3] Mark Everingham, S. M. Ali Eslami, Luc Van

Gool, Christopher K. I. Williams, John Winn, and

Andrew Zisserma. The pascal visual object classes

challenge a retrospective. IJCV, 2014. 1, 8

[4] Mobilenetv2 source code. Available from

https://github.com/tensorflow/

models/tree/master/research/slim/

nets/mobilenet. 1

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E.

Hinton. Imagenet classification with deep convolu-

tional neural networks. In Bartlett et al. [47], pages

1106–1114. 1

[6] Karen Simonyan and Andrew Zisserman. Very

deep convolutional networks for large-scale image

recognition. CoRR, abs/1409.1556, 2014. 1, 7

[7] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre

Sermanet, Scott E. Reed, Dragomir Anguelov, Du-

mitru Erhan, Vincent Vanhoucke, and Andrew Ra-

binovich. Going deeper with convolutions. In

IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2015, Boston, MA, USA, June

7-12, 2015, pages 1–9. IEEE Computer Society,

2015. 1

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and

Jian Sun. Deep residual learning for image recog-

nition. CoRR, abs/1512.03385, 2015. 1, 3, 4, 8

[9] James Bergstra and Yoshua Bengio. Random

search for hyper-parameter optimization. Journal

of Machine Learning Research, 13:281–305, 2012.

1

[10] Jasper Snoek, Hugo Larochelle, and Ryan P.

Adams. Practical bayesian optimization of ma-

chine learning algorithms. In Bartlett et al. [47],

pages 2960–2968. 1

[11] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan

Kiros, Nadathur Satish, Narayanan Sundaram, Md.

Mostofa Ali Patwary, Prabhat, and Ryan P. Adams.

Scalable bayesian optimization using deep neu-

ral networks. In Francis R. Bach and David M.

Blei, editors, Proceedings of the 32nd Interna-

tional Conference on Machine Learning, ICML

2015, Lille, France, 6-11 July 2015, volume 37

of JMLR Workshop and Conference Proceedings,

pages 2171–2180. JMLR.org, 2015. 1

[12] Babak Hassibi and David G. Stork. Second or-

der derivatives for network pruning: Optimal brain

surgeon. In Stephen Jose Hanson, Jack D. Cowan,

and C. Lee Giles, editors, Advances in Neural In-

formation Processing Systems 5, [NIPS Confer-

ence, Denver, Colorado, USA, November 30 - De-

cember 3, 1992], pages 164–171. Morgan Kauf-

mann, 1992. 2

[13] Yann LeCun, John S. Denker, and Sara A. Solla.

Optimal brain damage. In David S. Touretzky,

editor, Advances in Neural Information Process-

ing Systems 2, [NIPS Conference, Denver, Col-

orado, USA, November 27-30, 1989], pages 598–

605. Morgan Kaufmann, 1989. 2

[14] Song Han, Jeff Pool, John Tran, and William J.

Dally. Learning both weights and connec-

tions for efficient neural network. In Corinna

Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi

Sugiyama, and Roman Garnett, editors, Advances

in Neural Information Processing Systems 28: An-

nual Conference on Neural Information Process-

ing Systems 2015, December 7-12, 2015, Mon-

treal, Quebec, Canada, pages 1135–1143, 2015.

2

[15] Song Han, Jeff Pool, Sharan Narang, Huizi Mao,

Shijian Tang, Erich Elsen, Bryan Catanzaro, John

Tran, and William J. Dally. DSD: regulariz-

ing deep neural networks with dense-sparse-dense

training flow. CoRR, abs/1607.04381, 2016. 2

[16] Yiwen Guo, Anbang Yao, and Yurong Chen. Dy-

namic network surgery for efficient dnns. In

Daniel D. Lee, Masashi Sugiyama, Ulrike von

Luxburg, Isabelle Guyon, and Roman Garnett, ed-

itors, Advances in Neural Information Processing

Systems 29: Annual Conference on Neural Infor-

mation Processing Systems 2016, December 5-10,

2016, Barcelona, Spain, pages 1379–1387, 2016.

2

4518

https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet

[17] Hao Li, Asim Kadav, Igor Durdanovic, Hanan

Samet, and Hans Peter Graf. Pruning filters for

efficient convnets. CoRR, abs/1608.08710, 2016.

2

[18] Karim Ahmed and Lorenzo Torresani. Connec-

tivity learning in multi-branch networks. CoRR,

abs/1709.09582, 2017. 2

[19] Tom Veniat and Ludovic Denoyer. Learning time-

efficient deep architectures with budgeted super

networks. CoRR, abs/1706.00046, 2017. 2

[20] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and

Jian Sun. Shufflenet: An extremely efficient

convolutional neural network for mobile devices.

CoRR, abs/1707.01083, 2017. 2, 5

[21] Soravit Changpinyo, Mark Sandler, and Andrey

Zhmoginov. The power of sparsity in convolu-

tional neural networks. CoRR, abs/1702.06257,

2017. 2

[22] Min Wang, Baoyuan Liu, and Hassan Foroosh.

Design of efficient convolutional layers using sin-

gle intra-channel convolution, topological subdivi-

sioning and spatial ”bottleneck” structure. CoRR,

abs/1608.04337, 2016. 2

[23] Barret Zoph, Vijay Vasudevan, Jonathon Shlens,

and Quoc V. Le. Learning transferable archi-

tectures for scalable image recognition. CoRR,

abs/1707.07012, 2017. 2, 5

[24] Lingxi Xie and Alan L. Yuille. Genetic CNN.

CoRR, abs/1703.01513, 2017. 2

[25] Esteban Real, Sherry Moore, Andrew Selle,

Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,

Quoc V. Le, and Alexey Kurakin. Large-scale

evolution of image classifiers. In Doina Pre-

cup and Yee Whye Teh, editors, Proceedings of

the 34th International Conference on Machine

Learning, ICML 2017, Sydney, NSW, Australia,

6-11 August 2017, volume 70 of Proceedings of

Machine Learning Research, pages 2902–2911.

PMLR, 2017. 2

[26] Barret Zoph and Quoc V. Le. Neural architec-

ture search with reinforcement learning. CoRR,

abs/1611.01578, 2016. 2

[27] Andrew G. Howard, Menglong Zhu, Bo Chen,

Dmitry Kalenichenko, Weijun Wang, Tobias

Weyand, Marco Andreetto, and Hartwig Adam.

Mobilenets: Efficient convolutional neural net-

works for mobile vision applications. CoRR,

abs/1704.04861, 2017. 2, 4, 5, 6

[28] Francois Chollet. Xception: Deep learning

with depthwise separable convolutions. In The

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017. 2

[29] Dongyoon Han, Jiwhan Kim, and Junmo Kim.

Deep pyramidal residual networks. CoRR,

abs/1610.02915, 2016. 3

[30] Saining Xie, Ross B. Girshick, Piotr Dollár,

Zhuowen Tu, and Kaiming He. Aggregated

residual transformations for deep neural networks.

CoRR, abs/1611.05431, 2016. 3, 4, 8

[31] Martı́n Abadi, Ashish Agarwal, Paul Barham,

Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-

low, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,

Manjunath Kudlur, Josh Levenberg, Dan Mané,

Rajat Monga, Sherry Moore, Derek Murray, Chris

Olah, Mike Schuster, Jonathon Shlens, Benoit

Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,

Vincent Vanhoucke, Vijay Vasudevan, Fernanda

Viégas, Oriol Vinyals, Pete Warden, Martin Wat-

tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang

Zheng. TensorFlow: Large-scale machine learning

on heterogeneous systems, 2015. Software avail-

able from tensorflow.org. 5, 6

[32] Yangqing Jia, Evan Shelhamer, Jeff Donahue,

Sergey Karayev, Jonathan Long, Ross Girshick,

Sergio Guadarrama, and Trevor Darrell. Caffe:

Convolutional architecture for fast feature embed-

ding. arXiv preprint arXiv:1408.5093, 2014. 5

[33] Jonathan Huang, Vivek Rathod, Chen Sun, Men-

glong Zhu, Anoop Korattikara, Alireza Fathi,

Ian Fischer, Zbigniew Wojna, Yang Song, Sergio

Guadarrama, et al. Speed/accuracy trade-offs for

modern convolutional object detectors. In CVPR,

2017. 7

[34] Wei Liu, Dragomir Anguelov, Dumitru Erhan,

Christian Szegedy, Scott Reed, Cheng-Yang Fu,

and Alexander C Berg. Ssd: Single shot multibox

detector. In ECCV, 2016. 7

4519

[35] Joseph Redmon and Ali Farhadi. Yolo9000:

Better, faster, stronger. arXiv preprint

arXiv:1612.08242, 2016. 7

[36] Shaoqing Ren, Kaiming He, Ross Girshick, and

Jian Sun. Faster r-cnn: Towards real-time object

detection with region proposal networks. In Ad-

vances in neural information processing systems,

pages 91–99, 2015. 7

[37] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-

fcn: Object detection via region-based fully con-

volutional networks. In Advances in neural infor-

mation processing systems, pages 379–387, 2016.

7

[38] Jonathan Huang, Vivek Rathod, Derek Chow,

Chen Sun, and Menglong Zhu. Tensorflow object

detection api, 2017. 7

[39] Liang-Chieh Chen, George Papandreou, Florian

Schroff, and Hartwig Adam. Rethinking atrous

convolution for semantic image segmentation.

CoRR, abs/1706.05587, 2017. 7

[40] Matthias Holschneider, Richard Kronland-

Martinet, Jean Morlet, and Ph Tchamitchian.

A real-time algorithm for signal analysis with

the help of the wavelet transform. In Wavelets:

Time-Frequency Methods and Phase Space, pages

289–297. 1989. 7

[41] Pierre Sermanet, David Eigen, Xiang Zhang,

Michaël Mathieu, Rob Fergus, and Yann Le-

Cun. Overfeat: Integrated recognition, localiza-

tion and detection using convolutional networks.

arXiv:1312.6229, 2013. 7

[42] George Papandreou, Iasonas Kokkinos, and Pierre-

Andre Savalle. Modeling local and global defor-

mations in deep learning: Epitomic convolution,

multiple instance learning, and sliding window de-

tection. In CVPR, 2015. 7

[43] Liang-Chieh Chen, George Papandreou, Iasonas

Kokkinos, Kevin Murphy, and Alan L Yuille.

Deeplab: Semantic image segmentation with deep

convolutional nets, atrous convolution, and fully

connected crfs. TPAMI, 2017. 7

[44] Wei Liu, Andrew Rabinovich, and Alexander C.

Berg. Parsenet: Looking wider to see better. CoRR,

abs/1506.04579, 2015. 7

[45] Bharath Hariharan, Pablo Arbeláez, Lubomir

Bourdev, Subhransu Maji, and Jitendra Malik. Se-

mantic contours from inverse detectors. In ICCV,

2011. 8

[46] Christian Szegedy, Sergey Ioffe, and Vincent Van-

houcke. Inception-v4, inception-resnet and the im-

pact of residual connections on learning. CoRR,

abs/1602.07261, 2016. 8

[47] Peter L. Bartlett, Fernando C. N. Pereira, Christo-

pher J. C. Burges, Léon Bottou, and Kilian Q.

Weinberger, editors. Advances in Neural Infor-

mation Processing Systems 25: 26th Annual Con-

ference on Neural Information Processing Systems

2012. Proceedings of a meeting held December 3-

6, 2012, Lake Tahoe, Nevada, United States, 2012.

9

4520

