
1

INTRO TO CEPH
OPEN SOURCE DISTRIBUTED STORAGE

Neha Ojha
Project Technical Lead for RADOS
2021.11.17

2

OPEN SOURCE DISTRIBUTED STORAGE

● What is Ceph
○ and why do we care

● Ceph Architecture
○ RADOS
○ RGW - Object
○ RBD - Block
○ CephFS - File

● Management
● Community and Ecosystem

INTRO TO CEPH

3

The buzzwords

● “Software defined storage”
● “Unified storage system”
● “Scalable distributed storage”
● “The future of storage”
● “The Linux of storage”

WHAT IS CEPH?

The substance

● Ceph is open source software
● Runs on commodity hardware

○ Commodity servers
○ IP networks
○ HDDs, SSDs, NVMe, NV-DIMMs, ...

● A single cluster can serve object,
block, and file workloads

4

● Freedom to use (free as in beer)
● Freedom to introspect, modify,

and share (free as in speech)
● Freedom from vendor lock-in
● Freedom to innovate

CEPH IS FREE AND OPEN SOURCE

5

● Reliable storage service out of unreliable components
○ No single point of failure
○ Data durability via replication or erasure coding
○ No interruption of service from rolling upgrades, online expansion, etc.

● Favor consistency and correctness over performance

CEPH IS RELIABLE

6

● Ceph is elastic storage infrastructure
○ Storage cluster may grow or shrink
○ Add or remove hardware while system is

online and under load
● Scale up with bigger, faster hardware
● Scale out within a single cluster for

capacity and performance
● Federate multiple clusters across

sites with asynchronous replication
and disaster recovery capabilities

CEPH IS SCALABLE

7

CEPH IS A UNIFIED STORAGE SYSTEM

RGW

S3 and Swift
object storage

LIBRADOS
Low-level storage API

RADOS
Reliable, elastic, distributed storage layer with

replication and erasure coding

RBD

Virtual block device

CEPHFS

Distributed network
file system

OBJECT BLOCK FILE

8

RADOS

9

RADOS

● Reliable Autonomic Distributed Object Storage
○ Common storage layer underpinning object, block, and file services

● Provides low-level data object storage service
○ Reliable and highly available
○ Scalable (on day 1 and day 1000)
○ Manages all replication and/or erasure coding, data placement, rebalancing, repair, etc.

● Strong consistency
○ CP, not AP

● Simplifies design and implementation of higher layers (file, block, object)

10

RADOS SOFTWARE COMPONENTS

Monitor
● Central authority for authentication, data placement, policy
● Coordination point for all other cluster components
● Protect critical cluster state with Paxos
● 3-7 per cluster

Manager
● Aggregates real-time metrics (throughput, disk usage, etc.)
● Host for pluggable management functions
● 1 active, 1+ standby per cluster

OSD (Object Storage Daemon)
● Stores data on an HDD or SSD
● Services client IO requests
● Cooperatively peers, replicates, rebalances data
● 10s-1000s per cluster

ceph-mgr

ceph-osd

M

ceph-mon

11

SERVER

LEGACY CLIENT/SERVER ARCHITECTURE

VIP

BACKUP

BACKEND BACKEND BACKEND

● Virtual IPs
● Failover pairs
● Gateway nodes

APPLICATION

12

CLIENT/CLUSTER ARCHITECTURE

APPLICATION

RADOS CLUSTER

LIBRADOS

M

M M

● Smart request routing
● Flexible network addressing
● Same simple application API

13

DATA PLACEMENT

APPLICATION
LIBRADOS DATA OBJECT

??
M

M

M

14

LOOKUP VIA A METADATA SERVER?

APPLICATION
LIBRADOS

2

1

DATA OBJECT

???

● Lookup step is slow
● Hard to scale to trillions of objects

M

M

M

15

CALCULATED PLACEMENT

APPLICATION
LIBRADOS

2

0

DATA OBJECT

● Get map of cluster layout (num OSDs etc) on startup
● Calculate correct object location based on its name
● Read from or write to appropriate OSD

1

M

M

M

16

M

M

M

MAP UPDATES WHEN TOPOLOGY CHANGES

APPLICATION
LIBRADOS

5

3

DATA OBJECT

● Get updated map when topology changes
○ e.g., failed device; added node

● (Re)calculate correct object location
● Read from or write to appropriate OSD

4

17

RADOS DATA OBJECTS

● Name
○ 10s of characters
○ e.g., “rbd_header.10171e72d03d”

● Attributes
○ 0 to 10s of attributes
○ 0 to 100s of bytes each
○ e.g., “version=12”

● Byte data
○ 0 to 10s of megabytes

● Key/value data (“omap”)
○ 0 to 10,000s of items
○ 0 to 10,000s of bytes each

● Objects live in named “pools”

A: XYZ
B: 1234
FOO: BAR
M: QWERTY
ZZ: FIN

78 20 61 32
74 72 69 63
68 65 20 34
2e 31 35 2e
30 2d 35 30
2d 67 65 6e

POOL

18

? → OBJECTS → POOLS → PGs → OSDs
??? OBJECTS

foo.mpg 1532.000
1532.001
1532.002
1532.003
1532.004
1532.005
...

POOL

POOL 1

bazillions of objects
PiB of data

OSDS

N replicas of each PG
10s of PGs per OSD

PLACEMENT GROUPS

pgid = hash(obj_name) % pg_num
many GiB of data per PG

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.fff

...

19

WHY PLACEMENT GROUPS?

REPLICATE DISKS REPLICATE PGS REPLICATE OBJECTS

A A A

B B

C C C

B

D D D

● Each device is mirrored
● Device sizes must match

● Each PG is mirrored
● PG placement is random

● Each object is mirrored
● Object placement is

random

20

WHY PLACEMENT GROUPS?

REPLICATE DISKS

A A A

B B

C C C

B

D D D

B

● Need an empty spare
device to recover

● Recovery bottlenecked
by single disk throughput

REPLICATE PGS

● New PG replicas placed
on surviving devices

● Recovery proceeds in
parallel, leverages many
devices, and completes
sooner

● No spare needed

REPLICATE OBJECTS

● Every device participates
in recovery

21

WHY PLACEMENT GROUPS?

REPLICATE DISKS

A A A

B B

C C C

B

D D D

● Very few triple failures
cause data loss (of an
entire disk)

REPLICATE OBJECTS

● Every triple failure
causes data loss (of some
objects)

REPLICATE PGS

● Some triple failures
cause data loss (of an
entire PG)

PGs balance competing extremes

22

“Declustered replica placement”

● More clusters
○ Faster recovery
○ More even data distribution

● Fewer clusters
○ Lower risk of concurrent failures affecting

all replicas
● Placement groups a happy medium

○ No need for spare devices
○ Adjustable balance between durability (in

the face of concurrent failures) and
recovery time

Avoiding concurrent failures

● Separate replicas across failure domains
○ Host, rack, row, datacenter

● Create a hierarchy of storage devices
○ Align hierarchy to physical infrastructure

● Express placement policy in terms
hierarchy

KEEPING DATA SAFE

ROOT
DATA CENTER

ROW
RACK

HOST
OSD

23

● Pseudo-random placement algorithm
○ Repeatable, deterministic, calculation
○ Similar to “consistent hashing”

● Inputs:
○ Cluster topology (i.e., the OSD hierarchy)
○ Pool parameters (e.g., replication factor)
○ PG id

● Output: ordered list of OSDs
● Rule-based policy

○ “3 replicas, different racks, only SSDs”
○ “6+2 erasure code shards, 2 per rack,

different hosts, only HDDs”
● Stable mapping

○ Limited data migration on change
● Support for varying device sizes

○ OSDs get PGs proportional to their weight

PLACING PGs WITH CRUSH
PLACEMENT GROUPS OSDS

pgid = hash(obj_name) % pg_num
many GiB of data per PG

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.fff

N replicas of each PG
10s of PGs per OSD

+
PG ID

...

24

● Each RADOS pool must be durable
● Each PG must be durable
● Replication

○ Identical copies of each PG
○ Usually 3x (200% overhead)
○ Fast recovery--read any surviving copy
○ Can vary replication factor at any time

● Erasure coding
○ Each PG “shard” has different slice of data
○ Stripe object across k PG shards
○ Keep addition m shards with per-object

parity/redundancy
○ Usually more like 1.5x (50% overhead)
○ Erasure code algorithm and k+m

parameters set when pool is created
○ Better for large objects that rarely change

REPLICATION AND ERASURE CODING

D

A

T

A

D A T A

D A T A

D A T A

1

2

M Y O B J E C T

M Y O B J E C T

M Y O B J E C T

M

Y

O

B

J

E

C

T

1

2

3

4

REPLICATION ERASURE CODING

Two objects

1.5

1.5

1.5

1.5s0

1.5s1

1.5s2

1.5s3

1.5s4

1.5s5

25

SPECIALIZED POOLS

● Pools usually share devices
○ Unless a pool’s CRUSH placement policy specifies a specific class of device

● Elastic, scalable provisioning
○ Deploy hardware to keep up with demand

● Uniform management of devices
○ Common “day 2” workflows to add, remove, replace devices
○ Common management of storage hardware resources

RADOS CLUSTER

3x SSD POOL EC 8+3 HDD POOL 3x HDD POOL

26

RADOS VIRTUALIZES STORAGE

RADOS CLUSTER

3x SSD POOL EC 8+3 HDD POOL 3x HDD POOL

M

M M

“MAGIC”

27

PLATFORM FOR HIGH-LEVEL SERVICES

RGW

S3 and Swift
object storage

LIBRADOS
Low-level storage API

RADOS
Reliable, elastic, distributed storage layer with

replication and erasure coding

RBD

Virtual block device

CEPHFS

Distributed network
file system

OBJECT BLOCK FILE

28

RGW: OBJECT STORAGE

29

● S3 and Swift-compatible object storage
○ HTTPS/REST-based API
○ Often combined with load balancer to

provide storage service to public internet
● Users, buckets, objects

○ Data and permissions model is based on a
superset of S3 and Swift APIs

○ ACL-based permissions, enforced by RGW
● RGW objects not same as RADOS objects

○ S3 objects can be very big: GB to TB
○ RGW stripes data across RADOS objects

RGW: RADOS GATEWAY

RGW
LIBRADOS

RGW
LIBRADOS

S3
HTTPS

RADOS CLUSTER

30

RGW STORES ITS DATA IN RADOS

RGW
LIBRADOS

S3 PUT

USER + BUCKET INFO POOL

DATA POOL 1

BUCKET INDEX POOL

1

2,5

3

4

31

RGW ZONE

RGW ZONE: POOLS + RGW DAEMONS

RGW
LIBRADOS

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

DATA POOL (8+3 EC POOL)

32

RGW FEDERATION AND GEO-REP

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

● Zones may be different clusters and/or sites
● Global view of users and buckets

 ZONE A1 ZONE B1

ZONEGROUP A ZONEGROUP B ZONEGROUP C

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

● Each bucket placed in a ZoneGroup
● Data replicated between all Zones in a ZoneGroup

 ZONE C1 ZONE C2

SSL/TLS INTER-ZONE TRAFFIC

33

● Very strong S3 API compatibility
○ https://github.com/ceph/s3-tests

functional test suite
● STS: Security Token Service

○ Framework for interoperating with other
authentication/authorization systems

● Encryption (various flavors of API)
● Compression
● CORS and static website hosting
● Metadata search with ElasticSearch
● Pub/sub event stream

○ Integration with knative serverless
○ Kafka

● Multiple storage classes
○ Map classes to RADOS pools
○ Choose storage for individual objects or

set a bucket policy
● Lifecycle management

○ Bucket policy to automatically move
objects between storage tiers and/or
expire

○ Time-based
● Archive zone

○ Archive and preserve full storage history

OTHER RGW FEATURES

34

RBD: BLOCK STORAGE

35

KVM/QEMU

RBD: RADOS BLOCK DEVICE

● Virtual block device
○ Store disk images in RADOS
○ Stripe data across many objects in a pool

● Storage decoupled from host, hypervisor
○ Analogous to AWS’s EBS

● Client implemented in KVM and Linux
● Integrated with

○ Libvirt
○ OpenStack (Cinder, Nova, Glace)
○ Kubernetes
○ Proxmox, CloudStack, Nebula, …

RADOS CLUSTER

LIBRADOS
LIBRBD

VM

LINUX HOST

KRBD

XFS, EXT4, ...

RBD POOL

VIRTIO-BLK

36

SNAPSHOTS AND CLONES

● Snapshots
○ Read-only
○ Associated with individual RBD image
○ Point-in-time consistency

BASE OS

VM A

VM B

VM C

● Clones
○ New, first-class image
○ Writeable overlay over an existing snapshot
○ Can be snapshotted, resized, renamed, etc.

● Efficient
○ O(1) creation time
○ Leverage copy-on-write support in RADOS
○ Only consume space when data is changed

37

RBD: DATA LAYOUT

. . .

● Image name
● Image size
● Striping parameters
● Snapshot metadata (names etc.)
● Options
● Lock owner
● ...

● Chunk of block device content
● 4 MB by default, but striping is configurable
● Sparse: objects only created if/when data is written
● Replicated or erasure coded, depending on the pool

HEADER DATA OBJECTS

38

LIBRADOS
LIBRBD

.

RBD: JOURNALING MODE

. . .

● Recent writes
● Metadata changes

1 2

HEADER DATA OBJECTSWRITE JOURNAL

39

RBD MIRRORING

CLUSTER BCLUSTER A
DATA POOL (SSD/HDD) DATA POOL

JOURNAL POOL (SSD)

.

LIBRADOS
LIBRBD

RBD-MIRROR

LIBRADOS
LIBRBD

LIBRADOS
LIBRBD

● Asynchronous replication by
mirroring journal

● Point-in-time/crash consistent
copy of image in remote cluster

● Mirrors live data and snapshots
● Full lifecycle (fail-over, fail-back,

re-sync, etc.)
● Configurable per-image
● Scale-out, HA for rbd-mirror

40

OTHER RBD FEATURES

● ‘rbd top’
○ Real-time view of IO activity

● Quotas
○ Enforced at provisioning time

● Namespace isolation
○ Restrict access to a private namespace of

RBD images
● Import and export

○ Full image import/export
○ Incremental diff (between snapshots)

● Trash
○ Keep deleted images around for a bit

before purging

● Linux kernel client
○ ‘rbd map myimage’ → /dev/rbd*

● NBD
○ ‘rbd map -t nbd myimage’ → /dev/nbd*
○ Run latest userspace library

● iSCSI gateway
○ LIO stack + userspace tools to manage

gateway configuration
● librbd

○ Dynamically link with application

41

CEPHFS: FILE STORAGE

42

CEPHFS: CEPH FILE SYSTEM

● Distributed network file system
○ Files, directories, rename, hard links, etc.
○ Concurrent shared access from many

clients
● Strong consistency and coherent caching

○ Updates from one node visible elsewhere,
immediately

● Scale metadata and data independently
○ Storage capacity and IO throughput scale

with the number of OSDs
○ Namespace (e.g., number of files) scales

with the number of MDS daemons

RADOS CLUSTER

M

M

M

CLIENT HOST

KCEPHFS

01 10
11 00
10 01
00 11

METADATA DATA

43

CEPH-MDS: METADATA SERVER

MDS (Metadata Server)
● Manage file system namespace
● Store file system metadata in RADOS objects

○ File and directory metadata (names, inodes)
● Coordinate file access between clients
● Manage client cache consistency, locks, leases
● Not part of the data path
● 1s - 10s active, plus standbys

ceph-mds

ceph-mgr ceph-osd

M

ceph-mon

44

METADATA IS STORED IN RADOS

RADOS CLUSTER
METADATA POOL DATA POOL

CLIENT HOST

KCEPHFS

01 10
11 00
10 01
00 11

METADATA

DATA

DIRECTORIES
METADATA JOURNAL

45

CEPHFS SNAPSHOTS

● Snapshot any directory
○ Applies to all nested files and directories
○ Granular: avoid “volume” and “subvolume”

restrictions in other file systems
● Point-in-time consistent

○ from perspective of POSIX API at client
○ not client/server boundary

● Easy user interface via file system
● Efficient

○ Fast creation/deletion
○ Snapshots only consume space when

changes are made

$ cd any/cephfs/directory
$ ls
foo bar baz/
$ ls .snap
$ mkdir .snap/my_snapshot
$ ls .snap/
my_snapshot/
$ rm foo
$ ls
bar baz/
$ ls .snap/my_snapshot
foo bar baz/
$ rmdir .snap/my_snapshot
$ ls .snap
$

46

● Multiple file systems (volumes) per cluster
○ Separate ceph-mds daemons

● xattrs
● File locking (flock and fcntl)
● Quotas

○ On any directory
● Subdirectory mounts + access restrictions
● Multiple storage tiers

○ Directory subtree-based policy
○ Place files in different RADOS pools
○ Adjust file striping strategy

● Lazy IO
○ Optionally relax CephFS-enforced

consistency on per-file basis for HPC
applications

● Linux kernel client
○ e.g., mount -t ceph $monip:/ /ceph

● ceph-fuse
○ For use on non-Linux hosts (e.g., OS X) or

when kernel is out of date
● NFS

○ CephFS plugin for nfs-ganesha FSAL
● CIFS

○ CephFS plugin for Samba VFS
● libcephfs

○ Dynamically link with your application

OTHER CEPHFS FEATURES

47

COMPLETE STORAGE PLATFORM

RGW

S3 and Swift
object storage

LIBRADOS
Low-level storage API

RADOS
Reliable, elastic, distributed storage layer with

replication and erasure coding

RBD

Virtual block device

CEPHFS

Distributed network
file system

OBJECT BLOCK FILE

48

MANAGEMENT

49

INTEGRATED DASHBOARD

Monitoring
● Health
● IO and capacity

utilization

Metrics
● Prometheus
● Grafana

Management
● Configuration
● Provisioning
● Day 2 tasks

50

● Internal health monitoring
○ Error and warning states
○ Alert IDs with documentation, mitigation

steps, etc.
● Integrated configuration management

○ Self-documenting
○ History, rollback, etc.

● Device management
○ Map daemons to raw devices

($vendor_$model_$serial)
○ Scrape device health metrics (e.g. SMART)
○ Predict device life expectancy
○ Optionally preemptively evacuate failing

devices

A FEW OTHER MANAGEMENT FEATURES

● Telemetry
○ Phone home anonymized metrics to Ceph

developers
○ Cluster size, utilization, enabled features
○ Crash reports (version + stack trace)
○ Bugs are created based on crash reports
○ Performance metrics in-progress
○ Opt-in, obviously

51

● Cephadm
○ orchestration interface for installation and

management using containers
○ https://docs.ceph.com/en/pacific/cephadm

● Rook
○ Run Ceph in Kubernetes
○ https://rook.io/

● Other methods
○ ceph-ansible
○ DeepSea
○ Puppet
○ https://docs.ceph.com/en/pacific/install/inde

x.html#other-methods

INSTALLATION OPTIONS

https://rook.io/
https://docs.ceph.com/en/pacific/install/index.html#other-methods
https://docs.ceph.com/en/pacific/install/index.html#other-methods

52

COMMUNITY AND ECOSYSTEM

53

● Ceph is open source software!
○ Mostly LGPL2.1/LGPL3

● We collaborate via
○ GitHub: https://github.com/ceph/ceph
○ https://tracker.ceph.com/
○ E-mail: dev@ceph.io
○ #ceph-devel on irc.oftc.net

● We meet a lot over video chat
○ See schedule at http://ceph.io/contribute

● We publish releases periodically
● We work with downstream distributions

○ Debian, SUSE, Ubuntu, Red Hat

OPEN DEVELOPMENT COMMUNITY

https://github.com/ceph/ceph
https://tracker.ceph.com/
http://ceph.io/contribute

54

WE INTEGRATE WITH CLOUD ECOSYSTEMS

55

Ceph Days

● One-day regional event
● ~10 per year
● 50-200 people
● Normally a single track of technical talks
● Mostly user-focused

http://ceph.io/cephdays

Cephalocon

● Two-day global event
● Once per year, in the spring
● 300-1000 people
● Multiple tracks
● Users, developers, vendors

http://ceph.io/cephalocon

CEPH EVENTS

Coming up https://ceph.io/en/community/events/2022/cephalocon-portland/

http://ceph.io/cephdays
http://ceph.io/cephalocon
https://ceph.io/en/community/events/2022/cephalocon-portland/

56

CEPH FOUNDATION

● Organization of industry members
supporting the Ceph project and
community

● 34 members
○ Vendors
○ Cloud companies
○ Major users
○ Academic and government institutions

● Event planning
● Upstream CI infrastructure
● Community hardware test lab
● Documentation

PREMIER MEMBERS

GENERAL MEMBERS

ASSOCIATE MEMBERS

60

● http://ceph.io/
● Twitter: @ceph
● Docs: http://docs.ceph.com/
● Mailing lists: http://lists.ceph.io/

○ ceph-announce@ceph.io → announcements
○ ceph-users@ceph.io → user discussion
○ dev@ceph.io → developer discussion

● IRC: irc.oftc.net
○ #ceph, #ceph-devel

● GitHub: https://github.com/ceph/
● YouTube ‘Ceph’ channel

FOR MORE INFORMATION

http://ceph.io/
http://docs.ceph.com/
http://lists.ceph.io/
https://github.com/ceph/ceph/

