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OPEN SOURCE DISTRIBUTED STORAGE

● What is Ceph
○ and why do we care

● Ceph Architecture
○ RADOS
○ RGW - Object
○ RBD - Block
○ CephFS - File

● Management
● Community and Ecosystem

INTRO TO CEPH
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The buzzwords

● “Software defined storage”
● “Unified storage system”
● “Scalable distributed storage”
● “The future of storage”
● “The Linux of storage”

WHAT IS CEPH?

The substance

● Ceph is open source software
● Runs on commodity hardware

○ Commodity servers
○ IP networks
○ HDDs, SSDs, NVMe, NV-DIMMs, ...

● A single cluster can serve object, 
block, and file workloads
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● Freedom to use (free as in beer)
● Freedom to introspect, modify, 

and share (free as in speech)
● Freedom from vendor lock-in
● Freedom to innovate

CEPH IS FREE AND OPEN SOURCE
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● Reliable storage service out of unreliable components
○ No single point of failure
○ Data durability via replication or erasure coding
○ No interruption of service from rolling upgrades, online expansion, etc.

● Favor consistency and correctness over performance

CEPH IS RELIABLE
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● Ceph is elastic storage infrastructure
○ Storage cluster may grow or shrink
○ Add or remove hardware while system is 

online and under load
● Scale up with bigger, faster hardware
● Scale out within a single cluster for 

capacity and performance
● Federate multiple clusters across 

sites with asynchronous replication 
and disaster recovery capabilities

CEPH IS SCALABLE
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CEPH IS A UNIFIED STORAGE SYSTEM

RGW

S3 and Swift
object storage

LIBRADOS
Low-level storage API

RADOS
Reliable, elastic, distributed storage layer with

replication and erasure coding

RBD

Virtual block device

CEPHFS

Distributed network
file system

OBJECT BLOCK FILE
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RADOS
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RADOS

● Reliable Autonomic Distributed Object Storage
○ Common storage layer underpinning object, block, and file services

● Provides low-level data object storage service
○ Reliable and highly available
○ Scalable (on day 1 and day 1000)
○ Manages all replication and/or erasure coding, data placement, rebalancing, repair, etc.

● Strong consistency
○ CP, not AP

● Simplifies design and implementation of higher layers (file, block, object)
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RADOS SOFTWARE COMPONENTS

Monitor
● Central authority for authentication, data placement, policy
● Coordination point for all other cluster components
● Protect critical cluster state with Paxos
● 3-7 per cluster

Manager
● Aggregates real-time metrics (throughput, disk usage, etc.)
● Host for pluggable management functions
● 1 active, 1+ standby per cluster

OSD (Object Storage Daemon)
● Stores data on an HDD or SSD
● Services client IO requests
● Cooperatively peers, replicates, rebalances data
● 10s-1000s per cluster

ceph-mgr

ceph-osd

M

ceph-mon
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SERVER

LEGACY CLIENT/SERVER ARCHITECTURE

VIP

BACKUP

BACKEND BACKEND BACKEND

● Virtual IPs
● Failover pairs
● Gateway nodes

APPLICATION
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CLIENT/CLUSTER ARCHITECTURE

APPLICATION

RADOS CLUSTER

LIBRADOS

M

M M

● Smart request routing
● Flexible network addressing
● Same simple application API
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DATA PLACEMENT

APPLICATION
LIBRADOS DATA OBJECT

??
M

M

M



14

LOOKUP VIA A METADATA SERVER?

APPLICATION
LIBRADOS

2

1

DATA OBJECT

???

● Lookup step is slow
● Hard to scale to trillions of objects

M

M

M
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CALCULATED PLACEMENT

APPLICATION
LIBRADOS

2

0

DATA OBJECT

● Get map of cluster layout (num OSDs etc) on startup
● Calculate correct object location based on its name
● Read from or write to appropriate OSD

1

M

M

M
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M

M

M

MAP UPDATES WHEN TOPOLOGY CHANGES

APPLICATION
LIBRADOS

5

3

DATA OBJECT

● Get updated map when topology changes
○ e.g., failed device; added node

● (Re)calculate correct object location
● Read from or write to appropriate OSD

4
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RADOS DATA OBJECTS

● Name
○ 10s of characters
○ e.g., “rbd_header.10171e72d03d”

● Attributes
○ 0 to 10s of attributes
○ 0 to 100s of bytes each
○ e.g., “version=12”

● Byte data
○ 0 to 10s of megabytes

● Key/value data (“omap”)
○ 0 to 10,000s of items
○ 0 to 10,000s of bytes each

● Objects live in named “pools”

A: XYZ
B: 1234
FOO: BAR
M: QWERTY
ZZ: FIN

78 20 61 32  
74 72 69 63
68 65 20 34
2e 31 35 2e
30 2d 35 30
2d 67 65 6e

POOL
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? → OBJECTS → POOLS → PGs → OSDs
??? OBJECTS

foo.mpg 1532.000
1532.001
1532.002
1532.003
1532.004
1532.005
...

POOL

POOL  1

bazillions of objects
PiB of data

OSDS

N replicas of each PG
10s of PGs per OSD

PLACEMENT GROUPS

pgid = hash(obj_name) % pg_num
many GiB of data per PG

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.fff

...
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WHY PLACEMENT GROUPS?

REPLICATE DISKS REPLICATE PGS REPLICATE OBJECTS

A A A

B B

C C C

B

D D D

● Each device is mirrored
● Device sizes must match

● Each PG is mirrored
● PG placement is random

● Each object is mirrored
● Object placement is 

random
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WHY PLACEMENT GROUPS?

REPLICATE DISKS

A A A

B B

C C C

B

D D D

B

● Need an empty spare 
device to recover

● Recovery bottlenecked 
by single disk throughput

REPLICATE PGS

● New PG replicas placed 
on surviving devices

● Recovery proceeds in 
parallel, leverages many 
devices, and completes 
sooner

● No spare needed

REPLICATE OBJECTS

● Every device participates 
in recovery
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WHY PLACEMENT GROUPS?

REPLICATE DISKS

A A A

B B

C C C

B

D D D

● Very few triple failures 
cause data loss (of an 
entire disk)

REPLICATE OBJECTS

● Every triple failure 
causes data loss (of some 
objects)

REPLICATE PGS

● Some triple failures 
cause data loss (of an 
entire PG)

PGs balance competing extremes
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“Declustered replica placement”

● More clusters
○ Faster recovery
○ More even data distribution

● Fewer clusters
○ Lower risk of concurrent failures affecting 

all replicas
● Placement groups a happy medium

○ No need for spare devices
○ Adjustable balance between durability (in 

the face of concurrent failures) and 
recovery time

Avoiding concurrent failures

● Separate replicas across failure domains
○ Host, rack, row, datacenter

● Create a hierarchy of storage devices
○ Align hierarchy to physical infrastructure

● Express placement policy in terms 
hierarchy

KEEPING DATA SAFE

ROOT
DATA CENTER

ROW
RACK

HOST
OSD
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● Pseudo-random placement algorithm
○ Repeatable, deterministic, calculation
○ Similar to “consistent hashing”

● Inputs:
○ Cluster topology (i.e., the OSD hierarchy)
○ Pool parameters (e.g., replication factor)
○ PG id

● Output: ordered list of OSDs
● Rule-based policy

○ “3 replicas, different racks, only SSDs”
○ “6+2 erasure code shards, 2 per rack, 

different hosts, only HDDs”
● Stable mapping

○ Limited data migration on change
● Support for varying device sizes

○ OSDs get PGs proportional to their weight

PLACING PGs WITH CRUSH
PLACEMENT GROUPS OSDS

pgid = hash(obj_name) % pg_num
many GiB of data per PG

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.fff

N replicas of each PG
10s of PGs per OSD

+
PG ID

...
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● Each RADOS pool must be durable
● Each PG must be durable
● Replication

○ Identical copies of each PG
○ Usually 3x (200% overhead)
○ Fast recovery--read any surviving copy
○ Can vary replication factor at any time

● Erasure coding
○ Each PG “shard” has different slice of data
○ Stripe object across k PG shards
○ Keep addition m shards with per-object 

parity/redundancy
○ Usually more like 1.5x (50% overhead)
○ Erasure code algorithm and k+m 

parameters set when pool is created
○ Better for large objects that rarely change

REPLICATION AND ERASURE CODING

D

A

T

A

D A T A

D A T A

D A T A

1

2

M Y O B J E C T

M Y O B J E C T

M Y O B J E C T

M

Y

O

B

J

E

C

T

1

2

3

4

REPLICATION ERASURE CODING

Two objects

1.5

1.5

1.5

1.5s0

1.5s1

1.5s2

1.5s3

1.5s4

1.5s5
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SPECIALIZED POOLS

● Pools usually share devices
○ Unless a pool’s CRUSH placement policy specifies a specific class of device

● Elastic, scalable provisioning
○ Deploy hardware to keep up with demand

● Uniform management of devices
○ Common “day 2” workflows to add, remove, replace devices
○ Common management of storage hardware resources

RADOS CLUSTER

3x SSD POOL EC 8+3 HDD POOL 3x HDD POOL
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RADOS VIRTUALIZES STORAGE

RADOS CLUSTER

3x SSD POOL EC 8+3 HDD POOL 3x HDD POOL

M

M M

“MAGIC”
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PLATFORM FOR HIGH-LEVEL SERVICES

RGW

S3 and Swift
object storage

LIBRADOS
Low-level storage API

RADOS
Reliable, elastic, distributed storage layer with

replication and erasure coding

RBD

Virtual block device

CEPHFS

Distributed network
file system

OBJECT BLOCK FILE
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RGW: OBJECT STORAGE
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● S3 and Swift-compatible object storage
○ HTTPS/REST-based API
○ Often combined with load balancer to 

provide storage service to public internet
● Users, buckets, objects

○ Data and permissions model is based on a 
superset of S3 and Swift APIs

○ ACL-based permissions, enforced by RGW
● RGW objects not same as RADOS objects

○ S3 objects can be very big: GB to TB
○ RGW stripes data across RADOS objects

RGW: RADOS GATEWAY

RGW
LIBRADOS

RGW
LIBRADOS

S3
HTTPS

RADOS CLUSTER
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RGW STORES ITS DATA IN RADOS

RGW
LIBRADOS

S3 PUT

USER + BUCKET INFO POOL

DATA POOL 1

BUCKET INDEX POOL

1

2,5

3

4
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RGW ZONE

RGW ZONE: POOLS + RGW DAEMONS

RGW
LIBRADOS

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

DATA POOL (8+3 EC POOL)
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RGW FEDERATION AND GEO-REP

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

● Zones may be different clusters and/or sites
● Global view of users and buckets

 ZONE A1  ZONE B1

ZONEGROUP A ZONEGROUP B ZONEGROUP C

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

● Each bucket placed in a ZoneGroup
● Data replicated between all Zones in a ZoneGroup

 ZONE C1  ZONE C2

SSL/TLS INTER-ZONE TRAFFIC
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● Very strong S3 API compatibility
○ https://github.com/ceph/s3-tests 

functional test suite
● STS: Security Token Service

○ Framework for interoperating with other 
authentication/authorization systems

● Encryption (various flavors of API)
● Compression
● CORS and static website hosting
● Metadata search with ElasticSearch
● Pub/sub event stream

○ Integration with knative serverless
○ Kafka

● Multiple storage classes
○ Map classes to RADOS pools
○ Choose storage for individual objects or 

set a bucket policy
● Lifecycle management

○ Bucket policy to automatically move 
objects between storage tiers and/or 
expire

○ Time-based
● Archive zone

○ Archive and preserve full storage history

OTHER RGW FEATURES
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RBD: BLOCK STORAGE
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KVM/QEMU

RBD: RADOS BLOCK DEVICE

● Virtual block device
○ Store disk images in RADOS
○ Stripe data across many objects in a pool

● Storage decoupled from host, hypervisor
○ Analogous to AWS’s EBS

● Client implemented in KVM and Linux
● Integrated with

○ Libvirt
○ OpenStack (Cinder, Nova, Glace)
○ Kubernetes
○ Proxmox, CloudStack, Nebula, …

RADOS CLUSTER

LIBRADOS
LIBRBD

VM

LINUX HOST

KRBD

XFS, EXT4, ...

RBD POOL

VIRTIO-BLK
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SNAPSHOTS AND CLONES

● Snapshots
○ Read-only
○ Associated with individual RBD image
○ Point-in-time consistency

BASE OS

VM A

VM B

VM C

● Clones
○ New, first-class image
○ Writeable overlay over an existing snapshot
○ Can be snapshotted, resized, renamed, etc.

● Efficient
○ O(1) creation time
○ Leverage copy-on-write support in RADOS
○ Only consume space when data is changed
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RBD: DATA LAYOUT

. . .

● Image name
● Image size
● Striping parameters
● Snapshot metadata (names etc.)
● Options
● Lock owner
● ...

● Chunk of block device content
● 4 MB by default, but striping is configurable
● Sparse: objects only created if/when data is written
● Replicated or erasure coded, depending on the pool

HEADER DATA OBJECTS
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LIBRADOS
LIBRBD

. . . . . .

RBD: JOURNALING MODE

. . .

● Recent writes
● Metadata changes

1 2

HEADER DATA OBJECTSWRITE JOURNAL
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RBD MIRRORING

CLUSTER BCLUSTER A
DATA POOL (SSD/HDD) DATA POOL

JOURNAL POOL (SSD)

. . . . . .

LIBRADOS
LIBRBD

RBD-MIRROR

LIBRADOS
LIBRBD

LIBRADOS
LIBRBD

● Asynchronous replication by 
mirroring journal

● Point-in-time/crash consistent 
copy of image in remote cluster

● Mirrors live data and snapshots
● Full lifecycle (fail-over, fail-back, 

re-sync, etc.)
● Configurable per-image
● Scale-out, HA for rbd-mirror
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OTHER RBD FEATURES

● ‘rbd top’
○ Real-time view of IO activity

● Quotas
○ Enforced at provisioning time

● Namespace isolation
○ Restrict access to a private namespace of 

RBD images
● Import and export

○ Full image import/export
○ Incremental diff (between snapshots)

● Trash
○ Keep deleted images around for a bit 

before purging

● Linux kernel client
○ ‘rbd map myimage’ → /dev/rbd*

● NBD
○ ‘rbd map -t nbd myimage’ → /dev/nbd*
○ Run latest userspace library

● iSCSI gateway
○ LIO stack + userspace tools to manage 

gateway configuration
● librbd

○ Dynamically link with application
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CEPHFS: FILE STORAGE
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CEPHFS: CEPH FILE SYSTEM

● Distributed network file system
○ Files, directories, rename, hard links, etc.
○ Concurrent shared access from many 

clients
● Strong consistency and coherent caching

○ Updates from one node visible elsewhere, 
immediately

● Scale metadata and data independently
○ Storage capacity and IO throughput scale 

with the number of OSDs
○ Namespace (e.g., number of files) scales 

with the number of MDS daemons

RADOS CLUSTER

M

M

M

CLIENT HOST

KCEPHFS

01 10
11 00
10 01
00 11

METADATA DATA
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CEPH-MDS: METADATA SERVER

MDS (Metadata Server)
● Manage file system namespace
● Store file system metadata in RADOS objects

○ File and directory metadata (names, inodes)
● Coordinate file access between clients
● Manage client cache consistency, locks, leases
● Not part of the data path
● 1s - 10s active, plus standbys

ceph-mds

ceph-mgr ceph-osd

M

ceph-mon
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METADATA IS STORED IN RADOS

RADOS CLUSTER
METADATA POOL DATA POOL

CLIENT HOST

KCEPHFS

01 10
11 00
10 01
00 11

METADATA

DATA

DIRECTORIES
METADATA JOURNAL
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CEPHFS SNAPSHOTS

● Snapshot any directory
○ Applies to all nested files and directories
○ Granular: avoid “volume” and “subvolume” 

restrictions in other file systems
● Point-in-time consistent

○ from perspective of POSIX API at client
○ not client/server boundary

● Easy user interface via file system
● Efficient

○ Fast creation/deletion
○ Snapshots only consume space when 

changes are made

$ cd any/cephfs/directory
$ ls
foo bar baz/
$ ls .snap
$ mkdir .snap/my_snapshot
$ ls .snap/
my_snapshot/
$ rm foo
$ ls
bar baz/
$ ls .snap/my_snapshot
foo bar baz/
$ rmdir .snap/my_snapshot
$ ls .snap
$
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● Multiple file systems (volumes) per cluster
○ Separate ceph-mds daemons

● xattrs
● File locking (flock and fcntl)
● Quotas

○ On any directory
● Subdirectory mounts + access restrictions
● Multiple storage tiers

○ Directory subtree-based policy
○ Place files in different RADOS pools
○ Adjust file striping strategy

● Lazy IO
○ Optionally relax CephFS-enforced 

consistency on per-file basis for HPC 
applications

● Linux kernel client
○ e.g., mount -t ceph $monip:/ /ceph

● ceph-fuse
○ For use on non-Linux hosts (e.g., OS X) or 

when kernel is out of date
● NFS

○ CephFS plugin for nfs-ganesha FSAL
● CIFS

○ CephFS plugin for Samba VFS
● libcephfs

○ Dynamically link with your application

OTHER CEPHFS FEATURES
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COMPLETE STORAGE PLATFORM

RGW

S3 and Swift
object storage

LIBRADOS
Low-level storage API

RADOS
Reliable, elastic, distributed storage layer with

replication and erasure coding

RBD

Virtual block device

CEPHFS

Distributed network
file system

OBJECT BLOCK FILE
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MANAGEMENT
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INTEGRATED DASHBOARD

Monitoring
● Health
● IO and capacity 

utilization

Metrics
● Prometheus
● Grafana

Management
● Configuration
● Provisioning
● Day 2 tasks
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● Internal health monitoring
○ Error and warning states
○ Alert IDs with documentation, mitigation 

steps, etc.
● Integrated configuration management

○ Self-documenting
○ History, rollback, etc.

● Device management
○ Map daemons to raw devices 

($vendor_$model_$serial)
○ Scrape device health metrics (e.g. SMART)
○ Predict device life expectancy
○ Optionally preemptively evacuate failing 

devices

A FEW OTHER MANAGEMENT FEATURES

● Telemetry
○ Phone home anonymized metrics to Ceph 

developers
○ Cluster size, utilization, enabled features
○ Crash reports (version + stack trace)
○ Bugs are created based on crash reports
○ Performance metrics in-progress
○ Opt-in, obviously
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● Cephadm
○ orchestration interface for installation and 

management using containers
○ https://docs.ceph.com/en/pacific/cephadm

● Rook
○ Run Ceph in Kubernetes
○ https://rook.io/

● Other methods
○ ceph-ansible
○ DeepSea
○ Puppet
○ https://docs.ceph.com/en/pacific/install/inde

x.html#other-methods

INSTALLATION OPTIONS

https://rook.io/
https://docs.ceph.com/en/pacific/install/index.html#other-methods
https://docs.ceph.com/en/pacific/install/index.html#other-methods
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COMMUNITY AND ECOSYSTEM
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● Ceph is open source software!
○ Mostly LGPL2.1/LGPL3

● We collaborate via
○ GitHub: https://github.com/ceph/ceph
○ https://tracker.ceph.com/ 
○ E-mail: dev@ceph.io
○ #ceph-devel on irc.oftc.net

● We meet a lot over video chat
○ See schedule at http://ceph.io/contribute

● We publish releases periodically
● We work with downstream distributions

○ Debian, SUSE, Ubuntu, Red Hat

OPEN DEVELOPMENT COMMUNITY

https://github.com/ceph/ceph
https://tracker.ceph.com/
http://ceph.io/contribute
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WE INTEGRATE WITH CLOUD ECOSYSTEMS
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Ceph Days

● One-day regional event
● ~10 per year
● 50-200 people
● Normally a single track of technical talks
● Mostly user-focused

http://ceph.io/cephdays 

Cephalocon

● Two-day global event
● Once per year, in the spring
● 300-1000 people
● Multiple tracks
● Users, developers, vendors

http://ceph.io/cephalocon 

CEPH EVENTS

Coming up https://ceph.io/en/community/events/2022/cephalocon-portland/

http://ceph.io/cephdays
http://ceph.io/cephalocon
https://ceph.io/en/community/events/2022/cephalocon-portland/
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CEPH FOUNDATION

● Organization of industry members 
supporting the Ceph project and 
community

● 34 members
○ Vendors
○ Cloud companies
○ Major users
○ Academic and government institutions

● Event planning
● Upstream CI infrastructure
● Community hardware test lab
● Documentation



PREMIER MEMBERS



GENERAL MEMBERS



ASSOCIATE MEMBERS
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● http://ceph.io/ 
● Twitter: @ceph
● Docs: http://docs.ceph.com/ 
● Mailing lists: http://lists.ceph.io/ 

○ ceph-announce@ceph.io → announcements
○ ceph-users@ceph.io → user discussion
○ dev@ceph.io → developer discussion

● IRC: irc.oftc.net
○ #ceph, #ceph-devel

● GitHub: https://github.com/ceph/ 
● YouTube ‘Ceph’ channel

FOR MORE INFORMATION

http://ceph.io/
http://docs.ceph.com/
http://lists.ceph.io/
https://github.com/ceph/ceph/

