

Boston Linux UNIX
March 2016

Understanding systemd

Presented By
Christoph Doebeck
Principal Solutions Architect
Red Hat

Additional Credits
Patrick Ladd / Red Hat (TAM)

What is systemd?

● Replaces init
– Literally!

● First process to start and last to stop
● Parent process of all other processes
● Manages services and other resources

What was init again?

● init – System V UNIX
origins in 1970s

● Process for starting system:
– BIOS/UEFI → Bootloader → Kernel → init

● init is the parent of all processes
● Creates processes from scripts stored in

/etc/inittab
● “Modern” init scripts are stored in /etc/init.d and

called from /etc/rc*

Why replace System V init?

● init scripts!
– Old, poorly maintained

– Lack of
standardization

– Difficult / impossible to
analyze (by humans
and/or computers)

● Single threaded
● Unable to represent

complex relationships

/etc/init.d/httpd
(taken from RHEL 6.5, comments removed)

. /etc/rc.d/init.d/functions
if [-f /etc/sysconfig/httpd]; then
 . /etc/sysconfig/httpd
fi
HTTPD_LANG=${HTTPD_LANG-"C"}
INITLOG_ARGS=""
apachectl=/usr/sbin/apachectl
httpd=${HTTPD-/usr/sbin/httpd}
prog=httpd
pidfile=${PIDFILE-/var/run/httpd/httpd.pid}
lockfile=${LOCKFILE-/var/lock/subsys/httpd}
RETVAL=0
STOP_TIMEOUT=${STOP_TIMEOUT-10}
start() {
 echo -n $"Starting $prog: "
 LANG=$HTTPD_LANG daemon --pidfile=${pidfile} $httpd $OPTIONS
 RETVAL=$?
 echo
 [$RETVAL = 0] && touch ${lockfile}
 return $RETVAL
}
stop() {
 echo -n $"Stopping $prog: "
 killproc -p ${pidfile} -d ${STOP_TIMEOUT} $httpd
 RETVAL=$?
 echo
 [$RETVAL = 0] && rm -f ${lockfile} ${pidfile}
}

/etc/init.d/httpd
(continued)

reload() {
 echo -n $"Reloading $prog: "
 if ! LANG=$HTTPD_LANG $httpd $OPTIONS -t >&/dev/null; then
 RETVAL=6
 echo $"not reloading due to configuration syntax error"
 failure $"not reloading $httpd due to configuration syntax error"
 else
 LSB=1 killproc -p ${pidfile} $httpd -HUP
 RETVAL=$?
 if [$RETVAL -eq 7]; then
 failure $"httpd shutdown"
 fi
 fi
 echo
}

case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 status)
 status -p ${pidfile} $httpd
 RETVAL=$?
 ;;

/etc/init.d/httpd
(still continued…)

 restart)
 stop
 start
 ;;
 condrestart|try-restart)
 if status -p ${pidfile} $httpd >&/dev/null; then
 stop
 start
 fi
 ;;
 force-reload|reload)
 reload
 ;;
 graceful|help|configtest|fullstatus)
 $apachectl $@
 RETVAL=$?
 ;;
 *)
 echo $"Usage: $prog
{start|stop|restart|condrestart|try-restart|force-reload|reload|status|fullstatus|graceful|help|configtest}"
 RETVAL=2
esac
exit $RETVAL

systemd: httpd.service

[Unit]

Description=The Apache HTTP Server

After=remote-fs.target nss-lookup.target

[Service]

Type=notify

EnvironmentFile=/etc/sysconfig/httpd

ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND

ExecReload=/usr/sbin/httpd $OPTIONS -k graceful

ExecStop=/usr/sbin/httpd $OPTIONS -k graceful-stop

KillSignal=SIGCONT

PrivateTmp=true

[Install]

WantedBy=multi-user.target

So long, and thanks for all the fish

Sys V
init
1970-2011

Adoption

● Default init in
– Fedora 15 – May 2011

– Arch – October 2012

– Red Hat – June 2014

– SUSE – October 2014

– Ubuntu & Debian – April
2015

systemd -
System & Service

Manager

systemd Overview

● Controls More than Services
● Dependency Control
● Tracks and Restarts Services
● Service Activation
● Faster Start Up and Shutdown
● Improved Resource Management
● Better Logging, Debugging and Profiling
● Backwards compatible
● Easier to learn

systemd Units

Controls more than services, it controls all resources on the system -
referred to as units.

Examples of Units:

Units are defined using Unit Files

● Naming convention is name.unit_type

Services Sockets Mounts

Targets Swap and more...

systemd Unit Files

●Maintainer files: /usr/lib/systemd/system
●Administrator files: /etc/systemd/system
●Non-persistent, runtime data: /run/systemd
●Drop-ins: /etc/systemd/system/[name.type].d/*.conf

Note: unit files under /etc will take precedence over /usr

Don't forget `systemctl daemon-reload` when modifying
units.

Common Unit File Options

 Description=Unit description

 Documentation=Documentation links

 Requires=Additional units required

 Before/After=Unit must start Before/After

 Wants=Weaker Requires

 Conflicts=Units cannot co-exist

 WantedBy/RequiredBy=Set other units requirement

● Lots of great detail in the RHEL 7 System Administrator's Guide

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Unit_Files.html

Service Activation

● Start up services when needed
– Save resources

– Increased reliability

– Transparent to client

● Activation by Socket, Device, Path, Bus, and Timer

● Recommended to convert xinetd services to units

Improved Resource Management

● Services labeled and isolated with Cgroups
● More control than nice alone

● Can properly kill/restart entire service chain
● Can configure multiple instances for a single

service
● Can balance by shares or by hard limits

Kill/Restart Cleanly

● Tracked in the kernel
● Knows all children
● Don’t need to rely on a potentially misbehaving

process to hopefully kill its children

Auto-Restarting

● It’s paying attention!

● Reality: software does crash occasionally

● Reduces need for manual intervention

● Socket stays open, only lose that single transaction

systemd: Managing Services

With init:
$ service unit {start,stop,restart,reload}

With systemd:
$ systemctl {start,stop,restart,reload} unit1 [unit2 …]

– Allows multiple services to be acted on simultaneously
– Assumes .service as unit type
– Tab completion works great with systemctl

● Install bash-completion

systemctl vs service

systemctl vs service

● List services:

Managing Services: Enable / Disable

With init:
$ chkconfig unit {on,off}

With systemctl:

$ systemctl {enable, disable, mask, unmask} unit [unit...]

mask – “This will link these units to /dev/null, making it impossible to start them. This is
a stronger version of disable, since it prohibits all kinds of activation of the unit, including
manual activation. Use this option with care.”

Systemctl vs chkconfig

List all services:

systemctl

Lots of options...

systemd-*

Lots of new commands...

systemd Dependencies

● Define order and requirements for each unit
● Example: nfs-lock.service

 Requires=rpcbind.service network.target

 After=network.target named.service rpcbind.service

 Before=remote-fs-pre.target

● No more semi-arbitrary 00-99 ASCII order loading

Parallel, Not Serial

● Allows for Faster Start Up and Shutdown
● Efficiently Use System Resources

Boot Process
● Boot path determined by default.target

Let’s track it backwards!

Boot Process

● graphical.target requires multi-user.target...

Boot Process
● Which requires basic.target...

● Which requires sysinit.target...

Boot Process

Which wants local-fs-pre.target and swap.target...

● End of the line!

Boot Process

Targets then loaded from the beginning..

But, how does this work for starting individual services?

Boot Process – Services/Units

● Target “Wants” Directories:

 /usr/lib/systemd/system/<name>.target.wants/

/etc/systemd/system/<name>.target.wants/

● Files are symlinks to actual unit files
● Empty target wants directories are placeholders

Boot Process - Services/Units

Example for multi-user.target.wants:

Exploring dependencies

List all services by target:

Analyzing Boot

● Each unit is tracked during start up

Targets are the new Runlevels

Targets != Runlevels – some equivalency

● Targets can and will contain other targets

Traditional Runlevel Equivalent Target Symlink Target

Runlevel 0 poweroff.target runlevel0.target
Runlevel 1 rescue.target runlevel1.target
Runlevel 2 multi-user.target runlevel2.target

Runlevel 3 multi-user.target runlevel3.target

Runlevel 4 multi-user.target runlevel4.target

Runlevel 5 graphical.target runlevel5.target

Runlevel 6 reboot.target runlevel6.target

Common Targets

● Rescue and Emergency require root password!

Target Purpose

graphical.target Supports multiple users, graphical and text-based logins

multi-user.target Supports multiple users, text-based logins only

rescue.target Single user, local file systems mounted and basic system
initialization completed, networking is not activated

emergency.target Single user, root file system is mounted read-only, only a few
essential services are started, networking is not activated

Working with Targets

Viewing the default target:

Setting default target:

Default target is just a symlink:

Working with Targets

Changing currently loaded target:

Changing to rescue mode:

Changing to emergency mode without sending message:

Working with Targets

View list of currently loaded targets:

Results pipe to less by default: (can use --no-pager)

Shutting Down, Suspending, Etc.

Old Command New Command Description

halt systemctl halt Halts the system

poweroff systemctl poweroff Powers off the system

reboot systemctl reboot Restarts the system

pm-suspend systemctl suspend Suspends the system

pm-hibernate systemctl hibernate Hibernates the system

pm-suspend-hybrid systemctl hybrid-sleep Hibernates and suspends
the system

systemd-cgtop

Show top control groups by their resource usage:

● May need to enable accounting – perfect
drop-in!

systemd-cgls

Recursively show control group contents:

systemd Logging: journalctl

Improved Logging

● Don’t need to wait for syslog to start
● No More Losing STDERR and STDOUT
● More detail than classic syslog alone
● Logging with metadata
● Improved debugging and profiling

journalctl

● Does not replace rsyslog in RHEL 7
– rsyslog is enabled by default

● The journal is not persistent by default.
– Enable persistence: `mkdir /var/log/journal`

● Stored in key-value pairs
– journalctl [tab] [tab]
– Man 7 systemd.journal-fields

● Collects event metadata along with the message
● Simple to filter

– Interleave units, binaries, etc.

Using the Journal

● Tail the journal: `journalctl -f`
● Show X number of lines: `journalctl -n 50`
● View from boot: `journalctl -b`
● Filter by priority: `journalctl -p [level]`

0 emerg

1 alert

2 crit

3 err

4 warning

5 notice

6 debug

journalctl

View basic logs:

● Time stamps converted to system local time zone

● All logged data is shown, including rotated logs

● Non-persistent by default, can be preserved

journalctl

View most recent logs: (-f to follow)

● Can force stdout/stderr to write to journal with
systemd-cat if wanted

journalctl

Filter by priority:

Filter by time and priority:

● Advanced filtering by field, UID, unit, etc..

Using journalctl

● Other useful filters:
– -r reverse order

– -u [unit]

– binary e.g. /usr/sbin/dnsmasq [additional binaries]

– --since=yesterday or YYYY-MM-DD (HH:MM:SS)

– --until=YYYY-MM-DD

● View entire journal
– journalctl -o verbose (useful for grep)

Systemd Journal

How to enable persistent logging for the systemd journal

● https://access.redhat.com/solutions/696893

System Administrator's Guide

● https://access.redhat.com/documentation/en-US/Red_Hat_Enter
prise_Linux/7/html/System_Administrators_Guide/s1-Using_the
_Journal.html

Lennart Poettering - The systemd Journal
● https://www.youtube.com/watch?v=i4CACB7paLc

systemd - Review

Review: systemd

● Replaces init and does much more
● It is here and it’s powerful
● New boot and root password reset process
● New commands and functionality
● Plenty of great information and resources

available

Start using the new commands

Bash Completion is your friend!

– # yum install bash-completion

systemd Cheat Sheet for Red Hat Enterprise Linux 7
● https://access.redhat.com/articles/systemd-cheat-sheet

Common Administrative Commands in RHEL 5, 6, & 7

● https://access.redhat.com/articles/1189123

service
chkconfig

Compatibility

● Systemd maintains 99% backwards compatibility with
LSB compatible initscripts and the exceptions are well
documented.

● While we do encourage everyone to convert legacy
scripts to service unit files, it's not a requirement.

● Incompatibilities are listed here:
http://www.freedesktop.org/wiki/Software/systemd/Incompatibilities/

● Converting SysV Init Scripts:
http://0pointer.de/blog/projects/systemd-for-admins-3.html

https://access.redhat.com/solutions/696893
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-Using_the_Journal.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-Using_the_Journal.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-Using_the_Journal.html
https://www.youtube.com/watch?v=i4CACB7paLc

Systemd Resources
● RHEL 7 documentation:

https://access.redhat.com/site/documentation/Red_Hat_Enterpr
ise_Linux/

● Systemd project page:
http://www.freedesktop.org/wiki/Software/systemd/

● Lennart Poettering's systemd blog entries: (read them all)
http://0pointer.de/blog/projects/systemd-for-admins-1.html

● Red Hat System Administration II & III (RH134/RH254)
http://redhat.com/training/

● Systemd FAQ

● Tips & Tricks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 65
	Slide 66

