
KEY EVENT RECEIPT INFRASTRUCTURE (KERI)

DESIGN AND BUILD

Samuel M. Smith Ph.D.1

2019/07/03 version 1.6

Abstract—A decentralized key management infrastructure (DKMI) that uses the design principle
of minimally sufficient means is presented. The primary key management operation is key rota-
tion via a novel key pre-rotation scheme. Two trust modes are presented, the online or pair-wise
mode and the offline or any-wise mode. The offline mode depends on witnessed key event re-
ceipt logs (KERL) as an additional trust basis for validating events. This gives rise to the
acronym KERI for key event receipt infrastructure. The KERI approach may be much more per-
formant and scalable than more complex approaches that depend on a total ordered distributed
consensus ledger. KERI may be augmented with distributed consensus ledgers but does not re-
quire them. The KERI approach allows more granular architecture in a DKMI. Moreover, be-
cause KERI is event streamed it enables DKMI that operates in-stride with data events streaming
applications such as web 3.0, IoT, and others where performance and scalability are more impor-
tant. KERI is designed to support DIDs but its core services are identifier independent (this in-
cludes DID method independence). This makes KERI a candidate for a universal portable
DKMI.
Index Terms—Decentralized, Key, Management, Infrastructure, Key, Event, Receipts, Pre-rotation, Rotation, Event,
Streaming, DKMI, KERI, KERL, KEL.

1 INTRODUCTION

Herein we define an identity for an entity simply as an identifier and attributes that may be
used to describe the entity. Entities are not limited to natural persons but may include groups,
organizations, software agents, things, and even data items. With a centralized identity system
one entity controls all the identifiers. With a decentralized identity system, in contrast, disparate
entities each control some of the identifiers but in an interoperable way. To restate, each entity
may have a set of identifiers that it controls but are still recognized by the other entities. Each
entity may control or be sovereign over a set of identifiers. In the case where an identifier refers
to its controlling entity then that entity is self-sovereign over its own identifier and hence the
identity associated with that identifier. This property of decentralized identity systems has given
rise to the term self-sovereign identity (SSI) [1; 19; 20; 27].

The typical approach to establishing or proving control over an identifier is to use a universally
unique cryptographic digital signature based a key pair comprised of a public key and a private
key. The identifier includes the public key or a unique fingerprint of the public key. The private
key is used to digitally sign attestations that may be cryptographically verified using the public
key. The holder of the private key is in control of the identifier because only that holder can sign
attestations that may be cryptographically verified with the public key bound to that identifier.
This makes the identifier self-certifying [14–16].

1. ConsenSys Inc. Senior Member IEEE, sam@samuelsmith.org
1/80

1.1 Source of Truth
The fundamental assumption is that the (public, private) key pair is universally unique and

may be established using a random seed of sufficient size such that the likelihood of duplication
(collision) is negligible. A typical method for generating the random seed is to use a crypto-
graphic strength pseudo-random number generator with sufficient entropy. Currently 128 bits of
entropy is considered sufficient. Other self-certifying identifier systems may use different means
to generate and prove control over a universally unique identifier but this work is limited to sys-
tems where control is proven via cryptographic (public, private) key pair based digital signa-
tures. In this sense there is one primary source of truth for the identifier and hence any key man-
agement operations applied to the associated (public, private) key pair. This source of truth is the
set of signed attestations made with the private key and verifiable with the public key.

Although this work may be generally applied to any decentralized identity system that uses
self-certifying identifiers, its primary focus is on decentralized identity systems that are inter-
operable with the emerging DID (Decentralized ID) standard [7; 22; 25; 26].

1.2 Minimally Sufficient Means
For decentralized identity systems based on self-certifying identifiers, management of the as-

sociated private keys is essential. Because the controlling entity holds their own private key(s)
the primary burden of management falls on that entity or its assigns. The security of the identity
is a function of the security of the management infrastructure. As mentioned above, unlike a cen-
tralized or administrative identity system where a central administrative entity controls all the
identifiers, a decentralized identity system may have a multitude of controlling entities each con-
trolling one or more identifiers. Some of these entities may not have the resources or the exper-
tise to design, build, and maintain secure key management infrastructure. Consequently there is
a need for open interoperable decentralized key management infrastructure (DKMI). Moreover,
some applications of decentralized identity may benefit from DKMI that is scalable and perfor-
mant. Example applications include data streaming, supply chain, IoT (internet of things), and
other applications where data provenance among multiple controlling entities is important and
data processing is demanding. One design approach to composing scalable and performant infra-
structure is to find minimally sufficient means for each of the key management tasks. This is a
primary motivation for this work, that is, to identify the minimally sufficient means for essential
key management tasks. This does not imply that other means might not be beneficial or best for
a given application but that by first understanding minimally sufficient means an implementor
might have at hand more design options that might be customized to better fit a broader class of
applications.

1.3 Distributed Ledgers
The primary alternative for decentralized key management infrastructure is a distributed ledger

based on a distributed consensus algorithm that provides an additional source of truth for key
management operations. There are many types of distributed consensus algorithms with various
properties. One useful property of many distributed consensus algorithms is a total (global) or-
dering of events from multiple sources. This allows all transactions on the associated ledger to
have a unique ordering with respect to one another. In the case of key management, for example,
the total ordering property makes it easy to establish the ordering of key inception and rotation
events. In addition to the aforementioned signed attestations with the private key, a distributed
consensus ledger may be used as a source of truth in a DKMI. This may be as a primary (essen-
tial) source of truth this coupled to signed attestations or may be merely a secondary (non-essen-
tial) source of truth that provides complementary security. A distributed consensus ledger, how-
ever, may require a significant amount of infrastructure that must be setup, operated, and

2/80

maintained. Typically infrastructure that depends on distributed consensus ledgers must tradeoff
cost, throughput, and latency and as a result may not be as scalable or performant as infrastruc-
ture that does not depend on a distributed consensus ledger or that minimizes that dependency
such as minimizing the number of operations that must be performed on the distributed consen-
sus ledger.

This work explores more scalable and performant DKMI that either minimizes the number of
primary operations required on a distributed consensus ledger or merely uses a distributed con-
sensus ledger as a secondary source of truth if at all. One way to avoid or minimize the use of a
distributed consensus ledger is to leverage the fact that only the holder of the private key may
create events that produce verifiable operations to the keys including the ordering of associated
events. Thus a secondary source of truth merely needs to witness events and their ordering not
provide the ordering.

1.4 Key Management
The three main key management tasks are key reproduction, key recovery, and key rotation.

We call these the three Rs of key management [22]. The focus of this work is key rotation which
may be the most difficult.

1.4.1 Reproduction
Key reproduction includes the creation and derivation of (public, private) key pairs and the as-

sociated tracking and storage of the private keys. A discussion of key reproduction is provided
elsewhere. But in summary one method that simplifies key reproduction tasks is the use of hier-
archically deterministic key derivation algorithms that produce ((HD keys) or keychains. An HD
key pair is usually derived from a root private key and some deterministic key path. The key
path may be public. This means that there is no need to store the derived HD private key which
is a security risk because the private key may be rederived on demand from the root key and the
public derivation path.

1.4.2 Recovery
Key recovery involves methods for securely backing up or distributing private keys such that

they may be recovered in the event that the device holding the private key is lost or damaged.
Key recovery approaches are also discussed elsewhere.

1.4.3 Rotation
Key rotation involves methods for securely revoking a key pair and replacing it with a new

key pair. Revoke without replace may be accomplished by merely rotating to a null key. Thus ro-
tation may be implemented as a primary operation and revocation (without replace) may be im-
plemented as a special case of rotation. The primary motivation for key rotation is to prevent,
mitigate, or recover from an exploit of the private key due to exposure. The primary risk of ex-
posure comes from use of the private key to sign attestations. Creating a signature typically re-
quires loading the private onto a computing device in order to create the signature. Should an at-
tacker exploit or capture the computing device they may gain access to the private key. In
addition continued use of the private key to sign attestations may over time reduce the effort to
cryptographically break the key. Finally over time cryptographic exploits of a given (public, pri-
vate) key crypto-system may be discovered thereby rendering the key insecure. Best practice,
therefore, is to enable the rotation of a given (public, private) key pair to a new (public, private)
key pair either to the same crypto-system or to a stronger crypto-system. In decentralized identi-
ty systems, key rotation is useful when the controller of a self-certifying identifier needs to
maintain persistent control over that identifier indefinitely despite exploits of the private key(s).

3/80

Otherwise in the event of exploit, the controller could just abandon the exploited identifier and
create a new identifier with a new (public, private) key pair.

Periodically rotating the key bounds the risk of compromise resulting from exposure over
time. This can be used proactively to upgrade the digital signature crypto-system to keep up with
advances in computing. The more difficult problem to solve is rotation after a specific exploit
may have already occurred. In this case, the exploiter may create a valid signed rotation opera-
tion to a key pair under the exploiter’s control prior to the original controller detecting the ex-
ploit and they rotating to a new key pair under its own control. The exploiter could thereby ei-
ther “capture” the identifier or create a conflict or race condition where two inconsistent but
verifiable rotation events have been created. This work provides a scalable performant protocol
using pre-rotation or equivalently one-time rotation keys that solves the problem of secure rota-
tion after an exploit may have occurred.

With self-certifying identifiers special semantics are applied to rotation. The public key associ-
ated with the identifier is not changed merely the private key that is authoritative for signing at-
testations. Otherwise the identifier loses its value as an identifier. Consequently in order to verify
an attestation belonging to a self-certifying identifier the verifier must know the key rotation his-
tory for that identifier. To clarify, the original public key from the initial (public, private) key
pair is used to create the identifier. The identifier includes a reference to the public key. The
original private key is used to cryptographically sign attestations that prove control over the
identifier. The original public key is used to cryptographically verify the signatures. Each rota-
tion operation creates a new (public, private) key pair. A valid rotation operation must be signed
at the very least with the original private key. Rotation does not change the identifier. It still ref-
erences the original public key. After rotation, however, attestations are now signed with the new
private key and verified with the new public key. The original private key has been revoked and
replaced with the new private key specified in the rotation operation. The new public key is in-
cluded in the identifier’s key rotation history. Validation of an attestation first requires lookup
and validation of the key rotation history. The final rotation entry provides the current key pair
used to sign and verify attestations.

The key rotation history of digital signing keys used to control an identifier, provides the basis
for managing any other data affiliated with the identifier. In general, changes to the value of
attributes associated with or under the control of a digital signing key pair may be managed by
verifiable signed assertions using the signing key. Thus management of the signing key pair en-
ables management of affiliated data including other keys such as encryption keys.

This work describes a protocol that provides secure verifiable rotation that solves the problem
of successful exploit of a given private key due to exposure when that exploit happens sometime
after creation and use of the key. It is assumed, however, that the private key remains private for
some meaningful time after its creation. This protocol does not address the cryptographic securi-
ty a private key in the face of side channel attacks that capture the private key at the time of cre-
ation and/or first use nor brute force or other attacks that may break a private key given only the
public key and signed attestations. Side channel attacks, however, may be prevented or mitigated
in other ways.

2 NOMENCLATURE

2.1 Definitions
A digital signature is a string of characters that is produced by a cryptographic operation on a

given string of characters (signed text) using the private or signing key from a (public, private)
key pair. The public or verifying key may be used in a related cryptographic operation on the

4/80

given signed text to verify the validity of the signature. A digital signature has two important
properties. The signature is unique to the key pair for the given signed text and the signature is
non-repudiable by the signer, that is, only the holder of the private key can create the signature.

A digest is a string of characters that is the output of cryptographic hash function on another
(usually much longer) string of characters. The important property of a cryptographic hash func-
tion is that the digest is highly unique to the longer string of characters on which it was comput-
ed. This is called collision resistance. A digest is a space efficient but unique fingerprint of the
content of some message. A signed digest is a commitment to the content. Because digital signa-
tures schemes include hash functions, a signature is also a type of digest.

A self-certifying identifier is bound to at least one cryptographic digital signature (public, pri-
vate) key pair. This protocol description uses that the simpler term identifier to mean self-certify-
ing identifier unless that shorter expression would be ambiguous.

A controller is a controlling entity of an identifier. An identifier has at least one but may have
more than one controller. Let L be the number of controllers. All proper key management events
on the identifier must include a signature from the controller when there is only one or a signa-
ture from at least one of the controllers when there is more than one. Typically, when there is
more than one controller, control is established via L signatures, one from each controller. Al-
ternatively, with a K of L threshold control scheme, where K ≤ L, control is established via any
set of at least K signatures each one from a subset of at least size K of the L controllers. A more
sophisticated scheme is a fractional weighted multi-signature.

A message as used by the protocol includes a serialized data structure. The data structure must
be serialized in order to be digitally signed. Typically, a message includes a serialized data struc-
ture and one or more appended digital signatures.

An event may be conveyed by a message. The protocol is primarily concerned with creating,
transmitting, validating, and logging events as conveyed by messages.

A key management event or key event for short is a special type of event that represents a key
management operation on the key(s) associated with an identifier. These operations are typically
related to key rotation. A proper key management event includes a signature(s) by the con-
troller(s) of the associated identifier.

An inception event is a key event that represents the creation operation of an identifier and its
initial set of controlling keys. There may be one and only one inception operation performed on
an identifier.

A rotation event is a key event that represents a rotation operation on an identifier that rotates
the set of controlling keys to new set. There may be any number of rotation operations in a
unique ordered sequence. Any and all rotation operations may only occur after an inception
operation.

A key event log (KEL) is an ordered record of all the key event messages created by the con-
troller(s) of an identifier.

A validator is an entity that must determine which set of keys are the current controlling set for
an identifier that has been subject to rotation operations subject to key operation events by the
controller. A validator may do this by replaying the events in a valid KEL.

A witness is a somewhat trusted entity that may receive, verify, and store a key management
event on an identifier for which the witness is not a controller. In addition each witness controls
its own self-referential identifier via an associated (public, private) key pair or pairs. A witness
may thereby create digital signatures on key event messages it has received but are associated
with other identifiers not under its control. Any entity that controls its own self-referential identi-

5/80

fier may act as a witness by signing with its own identifier key(s) a copy of a key event message
for an identifier not under its control. Depending on the circumstances of the protocol a set of
entities may be designated as trusted or authoritative witnesses. The primary role of a witness is
to verify controller signatures attached to an event as well as the event’s integrity. In this sense a
witness is an event verifier. The witness also establishes priority to the first version of an event it
receives (first seen). The witness signifies this by only signing the first successfully verified ver-
sion of an event it receives. To restate a witness will never sign any other conflicting version of
the same event in a key event sequence.

A receipt is a special type of event conveyed by a message and may include of a copy of a key
management event message or else a reference to the message with one or more attached signa-
tures. This may be referred to as key event receipt. A valid key event receipt must include a
signature of the associated key event message. Typically each signature comes from one or more
witnesses or entities acting as witnesses. Indeed the primary purpose of a witness is to generate,
store, and disseminate an event receipt for the first verified version of an event the witness re-
ceives. A simple witness key event receipt message might include the identifier of the witness, a
label for the event that that it is receipting, and a signature by the witness of the receipted event.

A key event receipt log (KERL) is an ordered record of all the key event receipt messages for a
given identifier created by a given set of witnesses. Typically witnesses keep a KERL for all the
identifiers for which they create receipts.

Because a proper key event message includes the signature(s) of the controller(s) it may be
thought of as a special type of self-signed receipt. In this same way a KEL may be thought of as
a special type of KERL.

A judge is an entity that examines the entries in a KEL or KERL for a given identifier to deter-
mine if the associated events are valid and ultimately to determine which set of keys are the cur-
rent controlling set given the rotation operations on that given identifier as represented by the
events in the log. The primary role of a judge is to validate that a given event sequence has been
sufficiently witnessed such that it may be trusted. In this sense a judge is a validator of wit-
nessed events. Each judge controls its own self-referential identifier via an associated (public,
private) key-pair or pairs. A judge may thereby create digital signatures on attestations about
validations it has performed on KELs or KERLS to determine the authoritative key-pair(s) of an
identity. A judge may be a second party involved in a transaction with a first party controller or a
judge may be a trusted third party in a multi-party transaction that includes a controller and other
parties.

A given entity may act in the roles of both witness and judge. A validator might perform its
function by serving as both a witness and judge or by trusting other witnesses and judges.

This terminology gives rise to the acronym KERI for Key Event Receipt Infrastructure that de-
scribes the associated infrastructure consisting of controllers, witnesses, judges, validators and
key event (receipt) logs [21].

2.2 Pre-rotation
A described above, one use of key rotation it to recover from a successful exploit of a private

key. Given that the private key may be compromised the rotation operation must be authorized
using a different private key. One common approach it to use another key-pair just for rotation
operations. This has the disadvantage that the rotation key-pair will over time also become ex-
posed due to use and may therefore eventually be at risk of exploit and likewise need to be rotat-
ed. To mitigate this yet another key-pair may be used to authorize the rotation of the rotation
key-pair and so on. This comprises a more complex hierarchical key management infrastructure.

6/80

In contrast, the approach presented here, called pre-rotation, is much simpler [22]. In its simplest
form, whenever an identifier is created two key-pairs are created. The first is the original key-
pair bound to the identifier and the second is a pre-rotated key-pair that will be activated as a
result of the first rotation or the original key-pair. This pre-rotation is declared at initialization.
The associated key event is called an inception event. Each later rotation operation in turn cre-
ates and activates a new pre-rotated key-pair. In essence pre-rotation creates and uses one-time
rotation keys. Thus later exploit may not capture the key rotation authority. A rotation operation
must be signed by pre-rotated key-pair as declared in the previous rotation or inception opera-
tion. Furthermore for enhanced protection against forged key rotation histories each rotation
operation must also be signed by the current signing key-pair at the time of rotation. Each rota-
tion operation provides a signed commitment to the next pre-rotated key-pair but using the cur-
rent controlling key-pair and the previous (erstwhile) controlling key-pair . Because each pre-ro-
tated key is not used to sign anything at the time of its creation nor anything else prior to the
next rotation event, it is not thereby exposed to exploit from usage. A subsequent exploit of the
current key-pair cannot change that prior commitment to the specific pre-rotated key-pair. This
prevents the exploiter from capturing control of the identifier by using the exploited key to rotate
to some other key under its control. In order to verify the provenance of the current valid key-
pair a validator needs to be able to replay the history of rotation operations.

The pre-rotation approach has some useful features. For many exploits, the likelihood of suc-
cess is a function of exposure to continued monitoring or probing. Narrowly restricting the op-
portunity for exploit in terms of time, place, and method, especially if the time and place happen
only once, makes exploit extremely difficult. The exploiter has to either predict the one time and
place of the event or has to have continuous universal monitoring of all events. By declaring the
very first pre-rotation at the inception event of the associated identifier and controlling key-pair,
the window for exploit is as narrow as possible. Likewise, each subsequent rotation is a one time
and place event as well a one-time usage of the (pre-rotated) rotation key. Pre-rotation does not
require any additional key infrastructure for rotation. This makes the approach self-contained.
Because each rotation-operation event requires two signatures, one using the current key and the
other using the pre-rotated key, an exploiter would have to exploit both keys. This is extremely
difficult because the only prior times where the private side of the pre-rotated key-pair is used
are (1) at its creation in order to make the associated public key, and (2) at the later signing of
the rotation operation event. This minimizes the times and places to a very constrained set.

The caveat with pre-rotation is that the validating party be able to replay the rotation events to
ensure that it did not miss a rotation. This replay allows the validator to verify the provenance of
the chain of rotations. Requiring both the current and previous signing keys in the rotation oper-
ation means that a forger must exploit both keys or sets of keys (when multi-sig).

There are two use cases for providing this replay capability. The first is online one-to-one or
pair-wise interactions and the other is offline one-to-one (pair-wise) or equivalently offline one-
to-many (any-wise) interactions.

2.2.1 Online One-to-One Replay
In the online one-to-one (pair-wise) case, the first party is a controller of a given identifier and

wishes to interact with a second party, the validator, using that given identifier. The second party
must validate that the given identifier is in the control of the first party. To restate, with respect
to the given identifier the first party is the controller and the second party is the validator. Be-
cause the identifier is bound to the public key of a key-pair the controller may establish control
by sending an inception operation event message signed with the corresponding private key.
This inception event establishes the controller’s control over the identifier from the perspective

7/80

of the validator. The inception event also includes a commitment to a future pre-rotated key pair.
This forward chains the inception event to the next event albeit not to the content but to a future
verifiable signature made with the pre-rotated key. Likewise the first rotation operation event
sent by the controller after the inception event includes a commitment to the next pre-rotated
key-pair. Each subsequent rotation operation includes a commitment to the next pre-rotated key.
This establishes a forward chain of future commitments to unexposed key-pairs. The private key
in a pre-rotated key-pair is not used until a subsequent rotation operation. This prevents an ex-
ploiter from capturing control of a future rotation operation with an exposure based attack.

The controller must also establish a commitment to the order of events. Because only the con-
troller can create verifiable events, the controller may uniquely establish the order of events. No
other source of truth with respect to ordering is needed. As long as the validator maintains a
copy of the original event sequence it will be able to detect a later exploit that attempts to change
any of the events in that sequence

There are two ways a controller may establish an event sequence. The first is to use a monoto-
nically increasing sequence number such as an integer counter. The second is to include a back-
ward cryptographic commitment in each event to the contents of the previous event (excepting
the inception event). The inclusion of a commitment to the content of the previous event content
effectively backward chains the events together in an immutable sequence (a self contained
backward event chain). Although a sequence number is simpler and results in smaller messages.
the backward chain may be more robust because with backward chaining, possession of only the
latest event allows the detection of tampering of any earlier event that is later presented to the
validator without it having to keep an original copy of all the events. This prevents an exploit
where an alternative sequence of events are created but that terminate with the same key-pair(s)
as the original final event. This means the validator does not have to maintain strict custody over
its copy of the events but merely the final event in order to detect tampering in any other copy of
the event sequence. This relaxes the requirement from maintaining secure custody of the com-
plete key event sequence to merely maintaining secure custody of the last message. Backward
chaining comes at the cost of making each event message bigger to include a backward commit-
ment to the previous message.

A backward commitment is usually a collision resistant digest of the serialized content of the
previous event. The output of a hash function or a digital signature may be used as a collision re-
sistant digest. Because each event is already signed, using a hash requires extra computation to
create. Verification of a hash, however, may take somewhat less time than the verification of a
signature. Furthermore, a signature may be longer than a comparable hash. The choice of signa-
ture or hash function is a computation space tradeoff [6]. In this work the output of a crypto-
graphic hash function is used for the digest [5].

The validator needs to maintain a log of the key event messages to verify the provenance of
the current controlling key-pair for the identifier. This is a key event log (KEL). As long as the
validator maintains a copy of this log, an exploiter may not establish control of the identifier due
to an exposure exploit. For example, a later exploit of the original key-pair could be used to
forge a different inception event. As long as the validator has a copy of the original inception
event it could detect the forged inception event and ignore it. Likewise later exploits of any of
the keys except the last pre-rotated key could be used to forge different rotation events. As long
as the validator has a copy of the original chained key rotation event sequence starting with the
original inception event it could detect the exploited rotation events and ignore them. Because
the last pre-rotated key is never used until a new rotation event is created, the risk of exploit is
minimized (exploit must come from via a side-channel attack not exposure). When the key event
sequence is backward chained the validator need merely keep a secure copy of the latest event in

8/80

order to detect tampering of any copy of the event log. The validator still needs to be provided a
copy of all the events to validate the event sequence but should the validator lose custody of the
full event long and only maintain custody of the final event it may re-establish the validity of
some other copy by backwards validation from its preserved final event.

Absent any other infrastructure, in order that the validator obtain a complete event log, the
controller must ensure that the validator has received each and every rotation event in sequence.
This requires an acknowledged transfer of each new rotation event. In order to ensure that this
occurs the controller and validator must both be online (hence the online case) at the time of the
transfer. If either party becomes unavailable the interaction pauses and the other party must wait
until both parties are online to resume the interaction. Consequently this case is only useful for
interactions where pausing and resuming is acceptable behavior.

The acknowledgment message includes a signature by the validator of the associated key event
message, in other words, an event receipt. The controller now has a signed receipt that attests
that the validator received and verified the key event message. The validator is thereby in this
narrow sense also a witness of the event. The controller can keep the receipt in a key event re-
ceipt log (KERL). This provides a trust basis for transactions with the validator. The validator
may not later repudiate its signed receipts nor use a different key event history in interactions
with the controller without detection by the controller.

Each party could establish its own identifier for use with the other in the pair-wise interaction.
Each party would thereby in turn be the controller for its own identifier and the validator and
witness for the other’s identifier. Each could maintain a log of the key events for the other’s
identifier and key event receipts from the other for its own identifier thereby allowing each to be
invulnerable to subsequent exploit of the associated keys with respect to the pair-wise interac-
tion. A log that includes both the signed key events (signed by the controller) and signed key
event receipts (signed by the validator) is a log of doubly signed receipts of key events. Any
transactions conducted with the associated keys within the time-frame maintained by the logged
key event histories may thereby be verified with respect to the keys without the need for other
infrastructure such as a distributed consensus ledger. A discussion of how to verify associated
transaction events is provided later.

Of particular concern with this approach is the original exchange of the inception event. In a
pair-wise interaction, however, the controller may create a unique identifier for use with the as-
sociated validator and thereby a unique inception event for that identifier. This inception event is
therefore a one time, place, and use event. Consequently, as long as the validator retains a copy
of the original inception event, (or when backward chained a copy of any later event), the incep-
tion event itself is not subject to later exploit due to exposure from subsequent usage of the orig-
inating key-pair. Another way of looking at this approach is that each pair-wise relationship gets
a unique set of identifiers and associated key-pairs for each party.

The exchange of the inception event message must also be made invulnerable to man-in-the-
middle attacks (for example by using multi-factor authentication) otherwise an imposter (man-
in-the-middle) could create a different identifier under its control and confuse the validator about
the correct identifier to use in interactions with the genuine controller. A diagram of the pair-
wise infrastructure is shown below.

9/80

Entity
A

Controller of Identifier A

KEL/KERL of A
Key Event Log

Key Event Receipt Log

Validator of Identifier A

Entity
B

Event Generator Event Validator

KEL/KERL of A
Key Event Log

Key Event Receipt Log

 A Event Stream
A to B

A Receipt Stream
B to A

Figure 2.1. Online Pair-wise A to B

Entity
A

Validator of Identifier B

KEL/KERL of A
Key Event Log

Key Event Receipt Log

Controller of Identifier B

Entity
B

Event Generator Event Validator

KEL/KERL of A
Key Event Log

Key Event Receipt Log

B Event Stream
B to A

B Receipt Stream
A to B

Figure 2.2. Online Pair-wise B to A

2.2.2 Offline One-to-One or Offline One-to-Many Replay
In the offline case a validator may not be available at the time of creation to receive and ac-

knowledge an inception event. Consequently a later exploit of the originating key-pair might al-
low an exploiter to establish an alternative inception event and provide that instead to a validator
thereby preempting the original unexploited inception event. The exploiter could thereby capture
control of the identifier from the perspective of the validator. Likewise in the offline case a val-
idator might not be available at the time to receive and acknowledge a rotation event. Conse-
quently a later exploit of the associated key-pairs might allow an exploiter to establish an al-
ternative rotation event and provide that instead to a validator thereby preempting the original
unexploited rotation event. The exploiter could thereby capture subsequent control of the identi-
fier from the perspective of the validator. The offline one-to-one case generalizes to the one-to-
many case where one controller uses the same identifier for interactions with a set of validators.
this might occur when the controller is using a public identifier.

In the offline one-to-one (pair-wise) or one-to-many (any-wise) case, the key rotation history
for a given identifier is maintained by a trustworthy service. While a decentralized distributed
consensus ledger could provide this service it may not be the minimally sufficient means. This
work describes an alternative approach that uses a redundant immutable event log of inception
and rotation key event receipts to provide a minimally sufficient means. The service is provided
by a set of N designated witnesses and one or more judges. A validator may act as either a wit-

10/80

ness or a judge but in this case a validator is not one of the N designated witnesses that provide
the service. The validator may either be its own judge or rely on some other judge or judges.
The objective of the service is to provide at a copy of a correct or at least a complete key event
receipt log to any validator that needs it (correct and complete are defined below). A redundant
immutable (deletion proof) event log may be parallelizable and hence highly scalable.

In this approach, the controller of a given identifier creates and disseminates associated key
operation event messages to the set of N witnesses. Each witness verifies the signatures and con-
tent of each key event it receives. When a verified key event is also the first version of that event
the witness has received then it signs the event message and creates a receipt with its signature.
The witness then stores the event receipt in its log. The witness sends its receipt as an acknowl-
edgement to the controller. Depending on the dissemination protocol a witness may also send its
receipt to other witnesses.

By event version it is meant the contents of the event at a given location in the key event se-
quence. If the event contents are different but at the same location in the sequence then it is a
conflicting version of the event. The policy is that the first one wins (event version) and is stored
in the log all other versions are discarded. Later messages or receipts may not change an existing
entry in the log. Each witness adds to its log any verified signatures attached to receipts it re-
ceives from any other witness for the same version of the event in its log. Receipts for conflict-
ing event versions are also discarded (not kept in the log) but may be used to proof duplicitous
behavior by a witness. A witness’ event receipt log is therefore by construction an immutable
log. This log includes the events with attached verified signatures; from the controller, the wit-
ness itself, and other witnesses, that are the receipts.

Distribution of receipts to the N witnesses may be implemented extremely efficiently with re-
spect to network bandwidth by the controller by acting in round-robin fashion. Each time the
controller connects to a witness to send new events it also sends the receipts it has received so
far from other witnesses. The controller must wait for a receipt from each witness before it can
complete the dissemination which may require a second pass around the witnesses. This means,
however, that at most 2N two-way exchanges are needed for each event in order to create a fully
witnessed key event receipt log at each and every witness and the controller.

When network bandwidth is not too constrained then a gossip protocol might be a faster but
still efficient mechanism for disseminating the events and receipts. A directed acyclic graph or
other data structure can be used to determine what needs to be gossiped.

The purpose of having N designated witnesses is to better ensure trustworthiness of the service
in the event of faults. In addition to faults such as unresponsiveness and network interruptions,
allowed faults include what are commonly known as Byzantine faults such as malicious or du-
plicitous behavior (dishonesty) by the witnesses. Dishonest witnesses may neglect to forward or
store event receipts. Nonetheless, as long as the controller is honest and at any time any M of the
N witnesses are non-faulty then for any given event the controller will eventually have a signed
receipt with at least M+1 signatures in its event log (one from each of M witnesses plus one from
itself). Likewise given the same conditions, for any given event, eventually each of the non-
faulty witnesses will have a signed receipt with at least M+1 signatures in its event log. The ser-
vice is trustworthy because access by any validator or judge to a receipt from a witness on a giv-
en event enables the detection of later collusion or duplicitous behavior by that witness in an ex-
ploit on that same event. Events from an altered key event history produced by an exploiter will
not be accepted by any witness who had previously logged a different version of an event. Con-
sequently a successful exploit must exploit not merely one or more of the controller’s keys but
must also exploit M witnesses. This significantly increases the difficulty of exploit. To minimize

11/80

the risk of exploit a controller should take care to select N witnesses that are independent and
have a small likelihood of colluding to defraud.

We define a complete key event receipt log as one where each key event receipt in the se-
quence has at least M+1 signatures (one from each of M witnesses plus one from the controller).
With an honest controller where M of the N witnesses are non-faulty at any time, a judge or val-
idator is guaranteed to be able to eventually obtain from the service a complete key event receipt
log from any one of the non-faulty witnesses. A complete key event receipt log is also im-
mutable by construction.

The important result is that at any time the service with provide access by a validator via one
of the non-faulty witnesses to a complete key event receipt log that will enable it to validate the
controlling keys of the associated identifier over the time-frame of the events in the complete
log. A complete key event receipt log may also be provided by any entity that has retained a
copy of it not merely the witnesses. Subsequent exploit of the keys or exploit of any or all of the
witnesses or the controller may not exploit any of the events in the complete key event receipt
log. The following diagram shows the offline key event infrastructure.

12/80

Entity A

Controller of Identifier A

KEL/KERL of A
Key Event Log

Key Event Receipt Log

Validator of Identifier A

Entity B

Event Generator Event Validator

KERL of A
Key Event Log

Key Event Receipt Log

 Event and Event R
eceipt Stream

s

Offline Any-wise

Witness W-0

KEL/KERL of A
Key Event Log

Key Event Receipt Log

Event Verifier

Witness W-1

KEL/KERL of A
Key Event Log

Key Event Receipt Log

Event Verifier

Witness W-2

KEL/KERL of A
Key Event Log

Key Event Receipt Log

Event Verifier

Witness W-3

KEL/KERL of A
Key Event Log

Key Event Receipt Log

Event Verifier

Judge

KERL of A
Key Event Log

Key Event Receipt Log

Event Validator
Trusted by A

Trusted by B

 Event and Event R
eceipt Stream

s

Event R
eceipt Stream

s

Event R
eceipt Stream

s

Event R
eceipt Stream

s

Figure 2.3. Offline Any-wise A to Whoever

To summarize, in order to fool a validator or judge into accepting an erroneous or exploited
key event history, a successful exploiter must forge a complete key event receipt log but with a
different sequence of key events. To do this the exploiter must not only exploit one or more of
the controller’s signing keys (assuming an honest controller) but also exploit M of the N des-
ignated witnesses. Typically a successful exploit of a witness would involve gaining access to
the witness’ signing key. In rare cases, a simpler exploit could succeed if the exploit of the con-
troller’s key(s) happened before a witness received a verified copy of the true event. Then even
an unexploited (honest) witness would assume the exploited event was valid and unwittingly
collude with a set of dishonest witnesses. In order to create a complete event receipt log the ex-
ploiter would still need to induce another M-1 witnesses into supplying receipts of the exploited
event. This exploit requires a race condition where some witnesses are unresponsive long
enough for the key exploit due to exposure to occur. This may take some time. This race condi-

13/80

tion would be easy for the controller to prevent by replacing unresponsive witnesses. This miti-
gation is discussed later.

The assumption of an honest controller means the the validator must trust the controller. This
is a reasonable assumption in many cases. It it usually in the best interests of the controller to act
in a trustworthy manner with respect to its own identifiers. Furthermore because each key event
must be signed by the controller any inconsistent key events would be detectable by any valida-
tor that eventually had access to both events. This would destroy both the trustworthiness of the
controller with respect to that identifier and any value it may have built up in the identifier. Be-
cause the main purpose of key rotation is to allow a controller to maintain persistent control over
an identifier, detectably inconsistent behavior removes any benefit of persistent control of a giv-
en identifier.

Nevertheless in cases where duplicity provides some temporary benefit, a controller might be
tempted to act dishonestly (or equivalently an exploited might be tempted to fully exploit a con-
troller). One way to mitigate the risk to a validator of a dishonest controller is for the validator to
require that the witness pool include witnesses that the validator itself trusts. A validator might
provide to the controller the identifiers of the set of trusted witnesses. The validator would then
only accept an identifier from the controller if the controller designates one or more of the val-
idator’s trusted witnesses as witnesses to the key event receipt history of the controller’s
identifier.

Nevertheless, when M is less than a majority of N, a dishonest controller or fully exploited
controller might be able to induce different disjoint subsets of M witnesses into each eventually
producing a divergent (inconsistent) but complete (and immutable) key event receipt log for the
same identifier. This might be used to temporarily create a race condition that the dishonest con-
troller may be able to exploit. Any validator, judge, or witness, however, merely needs to anony-
mously query more than M witnesses to detect the inconsistency. This limits the exploit potential
of a dishonest controller albeit at some cost to the participants.

Requiring that the number of non-faulty witnesses M be a majority of N at any time adds an
additional property that will prevent a dishonest controller from ever inducing the creation of
more than one version of a complete key event receipt log for a given identifier. When M is a
majority of N then in order for two inconsistent key event receipt logs (different sequence of key
events) to be created an honest witness would have to create a receipt for two conflicting ver-
sions of the same event which an honest witness would never do. Consequently, no other com-
plete log may be created with a different sequence of events despite a dishonest or fully exploit-
ed controller because at least one of the M witnesses must be honest. To see how this is so,
consider that if M is a majority of N and M witnesses are non-faulty then the number of faulty
witnesses F must be less than M, that is,

F = N −M < M . (2.1)
A complete event log will also be correct whenever there may not be any other complete event

log with a different sequence of key events. This will be true when M is a majority of N. To re-
state, a complete event receipt log is also a correct event receipt log when completeness requires
that each event receipt is signed by a majority of the witnesses.

When M is a majority of N then even despite a dishonest or fully exploited controller, the ser-
vice may either only produce a correct event receipt log or only produce incomplete event re-
ceipts logs but may not produce multiple complete but divergent event receipt logs. In other
words, should the service ever produce a complete event receipt log then that event receipt log
will also be correct. In the case of an honest controller then the service will produce at least one
correct event receipt log which may be provided to a validator by any of the latest set of M non-

14/80

faulty witnesses. When the controller is responsive it will also produce a correct event receipt
log which it may provide to a validator.

The most important result is that when M is a majority of N where M witnesses are non-faulty
at any time, then the service will either provide to a validator or judge a correct and complete
key event receipt log (when the controller is honest) or it may not provide a complete log at all
(much less correct). This protects the validator from a dishonest controller. A correct log enables
validation of the controlling keys of the associated identifier over the time-frame of the events in
the log. Once produced a correct key event receipt log may be provided by any entity that has re-
tained a copy of it not merely the witnesses. Subsequent exploit of the controller’s keys and/or
exploit of less than M of witnesses may not invalidate any of the events in a correct key event re-
ceipt log. Moreover, even in the extreme case that a full exploit of the controller and all the wit-
nesses has occurred and given that they produce a correct but divergent event receipt log, a prior
copy of a correct key event receipt log will enable detection and proof that an exploit has oc-
curred. In this extreme case some other mechanism may be used to resolve the production of
more than one complete but divergent event receipt log. This might be through an anchor trans-
action to the event log on a distributed consensus ledger to establish priority of the original event
sequence. This approach minimizes the use of a distributed consensus ledger to only that of re-
solving the most extreme and unlikely cases.

Moreover, distributed consensus algorithms employed by blockchain ledgers, typically, require
multiple rounds of exchanges between replicants (members of the consensus pool) in order to
come to consensus. In some protocols each round requires a number of exchanges that scales
with N2. In contrast, the witnessed key event receipt log algorithm presented here is much more
scalable because the algorithm only needs two rounds of receipt exchanges between the con-
troller and witnesses for each new event. The total number of exchanges scale with as little 2N.
Using a gossip protocol and/of DAG for this algorithm may allow very efficient tradeoffs be-
tween throughput and network bandwidth. In general the requirements for this witnessed proto-
col are much less than that of a distributed consensus ledger and hence a much more minimally
sufficient means for decentralized key management infrastructure (KERI for DKMI) even in
cases of extreme exploit

2.2.3 Judge
Validation by a judge of an event receipt log adds additional security. Like a witness, the judge

first verifies the controller signatures and event content for each event. The judge also verifies
all the witness signatures for each event and validates that there are at least M verified witness
signatures. The operation associated with the event is now in force or active until it is superseded
by a later event. The result of the operation is now applied when verifying subsequent events in
the log. If an event is not complete (i.e. does not have at least M verified witness signatures then
the validation stops and the associated key event receipt log is deemed invalid by the judge. A
given implementation of a judge may apply additional rules to resolve the rare case of full ex-
ploit of the controller and M witnesses that may thereby produce multiple valid complete but di-
vergent key event receipt logs. The judge may use the first received or resort to some other trust
source including other judges. This could include a median time stamp of the astronomical time
at the time of reception of the inception event or some other consensus algorithm with respect to
other judges such a distributed consensus ledger.

15/80

2.3 Representations
2.3.1 Key-pair

Each entity uses its own identifier when participating in the protocol. That identifier is repre-
sented with an upper case letter symbol such as A, B, C etc. Each identifier has a a controlling
(public, private) key pair. Without loss of generality that key pair is represented with the same
letter symbol as the entity’s identifier but where the public key is uppercase and the private key
is lower case. For example, entity A has a key pair (A, a) where A denotes the public key and a
denotes the private key. Successive controlling key pairs are indicated with a superscript. For
example (A0, a0) for the initial key pair and (A1, a1) for the next pair. When it is not important to
distinguish which key pair is used but merely to indicate that the latest valid or authoritative key
pair is to be used whichever index it may be then the superscripts are left off. The key pair then
becomes (A, a). Usually the context determines which member of the key pair, the public key for
verification or private key for signing, is to be used. In those cases, without loss of clarity only
the uppercase may be used to represent the appropriate member of the key pair.

2.3.2 Entity
Individual entities that are members of a class of similar entities may be represented by a sub-

scripted uppercase letter symbol where the letter symbol denotes the class and the subscript de-
notes the member. Suppose for example that C denotes the class of controllers. Then C0 and C1

denote two different controllers. This convention may be combined with superscripts to denote
successive controlling key pairs for each controller, such as, C0

0, c0
0() and C0

1, c0
1() for the first

two key pairs of C0 , and C1
0, c1

0() and C1
1, c1

1() for the first two key pairs of C1 . Likewise

C0 , c0() for the latest key pair of C0 and C1 , c1() for the latest key pair of C1 .

2.3.3 Serialized Data
A data structure with ordered fields may is represented by a tuple where the tuple is denoted

with parentheses about a comma separated list of field names, such as, t, A,C() . A serialized
version of that data structure is denoted with angle brackets about a comma separated list of the
field names, such as, t, A,C . In general a tuple may be converted to a data structure with la-
beled key value pairs. Ordering is important when serializing.

2.3.4 Signature
A digital signature operation is represented with the lowercase greek sigma, σ where the sym-

bol of the signing key pair is provided as a subscript to the sigma and the serialized data or text
is provided as the argument to the signing operation. For example, the digital signature for entity
A may be denoted as follows:

σ
A0

t, A,C() , (2.2)

where the signing key is the private key from the key pair, A0, a0() controlled by A and the

signed text is the serialized data structure, t, A,C . When appropriate an alternative form
would use the lowercase symbol for the private key instead, as follows;

σ
a0

t, A,C() . (2.3)

16/80

But as stated above when there is no doubt as to the context, the uppercase symbol may be used
to represent the appropriate member from the key pair. A message that includes both a serialized
data structure and an attached signature may be denoted as follows:

t, A,C σ
A0

t, A,C() . (2.4)

A message with two attached signatures, one each from entities A and B may be denoted as
follows:

t, A,C σ
A0

t, A,C()σ B0
t, A,C() , (2.5)

where the signing key for B is the private key from the key pair, B0, b0() and the other parts are
as above. Without confusion, in the expression above the arguments to the signing operations
may be redundant. Therefore a more compact form of the preceding expression may be denoted
as follows:

t, A,C σ
A0
σ

B0
. (2.6)

Expressions eq. 2.5 and eq. 2.6 are equivalent. When the attached signatures use the latest key
pair from both A and and B then an even more compact form of eq. 2.6 may be denoted as
follows:

t, A,C σ Aσ B . (2.7)

2.3.5 Event
When the message is a key event message for an identifier then the greek epsilon, ε may be

used to label the event with a subscript representing its position in the event sequence, such as,
ε0 . When the particular identifier the event belongs too is not provided by the context then the
ε0 is used as a subscript on the symbol representing the identifier, such as, Aε0

. For example a
key event message for identifier A might be labeled as follows:

t, A, A0, A1 σ
A0
= Aε0

= ε0 . (2.8)

2.3.6 Receipt
A receipt of a key event message consists of that key event message together with an attached

signature made by a witness of that event message. A key event receipt may include other infor-
mation such as the identifier of the witness and/or the witnesses public key needed to verify its
signature. In general a witness may use a specific identifier for a given KERL (key event receipt
log). Should the keys for the identifier become compromised the witness may recover from the
compromise by either rotating the compromised key and resuming operation as a witness under
the same identifier or cease acting as a witness using that identifier. An exploiter may not change
previously created receipts and inconsistent receipts from the same witness will invalidate the
witness. In the later approach the witness may resume acting as a witness but under a new identi-
fier and must therefore recreate all its receipts using the new identifier. Although either approach
may be made to work, the later approach avoids recursive rotation validation of KERL entries
(where the KERL entries of witnesses to a controller are validated and then the KERL entries of
witnesses the witnesses are validated and so on). Recursive validation complicates the imple-
mentation. Consequently, without loss of generality, in this work witnesses may not rotate keys
associated with their identifiers but must create a new identifier when exploited. Let W0 repre-
sent a witness that uses its only signing key pair. A minimal receipt created by W0 of event
Aε0

may be denoted in long form as follows:

17/80

t, A, A0, A1 σ
A0

t, A, A0, A1() σW0
t, A, A0, A1 σ

A0
t, A, A0, A1()() (2.9)

where σW0
t, A, A0, A1 σ

A0
t, A, A0, A1()() is the the digital signature created by W0 using its

key-pair W0, w0() of the key event t, A, A0, A1 σ
A0

t, A, A0, A1() . The second set of enclosing
brackets in expression eq. 2.9 indicates what text is signed by σW0

. The equivalent short form of
this receipt may be expressed as follows:

t, A, A0, A1 σ
A0

σW0
(2.10)

where the second set of enclosing brackets once again indicates what text is signed by σW0
. An

even shorter form would use the event label Aε0
= ε0 (when A is given by context) as follows:

Aε0
σW0

= ε0 σW0
(2.11)

A receipt of the same event signed by two witnesses, W0 and W1 may be represented in short
form as follows:

t, A, A0, A1 σ
A0

σW0
σW1

= Aε0
σW0

σW1
= ε0 σW0

σW1
. (2.12)

A receipt may be labeled with the lowercase greek rho, ρ with subscripts representing the wit-
nesses who created the attached signatures and the argument of the receipt being either the asso-
ciated key event or its label. This gives the compact receipt label form as follows:

ρW0W1
t, A, A0, A1 σ

A0() = t, A, A0, A1 σ
A0

σW0
σW1

. (2.13)

or the extremely compact receipt and event label form as follows:

ρW0W1
Aε0() = Aε0

σW0
σW1

= t, A, A0, A1 σ
A0

σW0
σW1

, (2.14)

or when the context gives us A then
ρW0W1

ε0() = ε0 σW0
σW1

. (2.15)

2.3.7 Receipt Message
A key event receipt message conveys information about the receipt. Typically the recipient of a

key event receipt message already has a copy of the associated key event message. Consequently
there is no need to retransmit a copy of original key event in the receipt message. Likewise the
recipient of the receipt may know the identity of the sending witness and thereby its public key.
The only required element is the witness’ signature of the key event. Nonetheless, in addition to
the signature it may be convenient to include in the receipt message the identifier and/or public
key of the witness and a label of the event. This makes the message bigger but may be easier to
track and manage especially with an asynchronous communications channel. For a witness
identifier W0 that is bound to W0

0 , w0
0() its key event receipt message may be expressed as

follows:

tk ,W0,σW0
(2.16)

where tk is the label of the associated key event, W0 is the witness’ identifier, and σW0
 is the

signature of the associated key event, The message itself does not need to be signed by the
witness because the only important information the message conveys is that the witness

18/80

“witnessed” the associated key event. The witness’ signature is non-repudiable so a verified
copy of the signature is sufficient to convey that information. In order to verify the signature the
recipient of the message needs to have a copy of the original key event message and know the
signature’s verification (public) key. The event label and witness identifier and in the receipt
message enable convenient lookup of that information.

2.3.8 Digest
The digest of a key event message is string of characters produced by a cryptographic hash

function that is a space efficient but unique fingerprint of the content of the message. A signed
digest is a commitment to the message content. The serialized data or text is provided as the ar-
gument to the hash function. A digest may be labeled with the lowercase greek eta, η . A digest
of serialized data structure t, A, A0, A1 may be denoted as:

η t, A, A0, A1() . (2.17)

A digest of a full event message comprised of a serialized data structure and an attached signa-
ture may be denoted as follows:

η t, A, A0, A1 σ
A0() =η Aε0() =η ε0() , (2.18)

where t, A, A0, A1 σ
A0
= Aε0

= ε0 are various denotations of the event message.

2.3.9 Single and Multiple Signature
The descriptions so far have assumed that the current control authority over the identifier at

any point in time is based on a single key-pair. One way to increase security is to use a multi-
signature approval schemes where multiple simultaneous key-pairs jointly control the identifier.
This would require multiple signers to authorize or approve key management events and verifi-
able attestations associated with the identifier. Multi-signature approval may add an extra layer
of security thereby making exploit more difficult. They may also lessen the risk of loss of a sin-
gle private key and make key recovery more robust. Multiple signature rotation, however, can be
somewhat complex. To simplify and clarify the descriptions of both the single and multiple
signature versions of the protocols some terminology is introduced in this section.

The sequence of key-pairs used to control an identifier may be denoted with integer index j ,
such as, C j , c j() . The zeroth index, where j = 0 , indexes the originating key-pair, C 0, c0() ,

whose public key, C 0 is bound to the identifier C and controlled by private key c0 . A sequence
of indexed public keys may be used to represent the sequence of key-pairs as follows:

C 0,C1,C 2,… , (2.19)

where C j is the j th public key in the sequence for a controller labeled C.

The sequence of rotation operations may be denoted with integer index l. Each rotation opera-
tion changes the controlling key-pair(s) for the identifier. When the controlling key-pair is singu-
lar, then each rotation consumes one new key-pair from the sequence. In this case, the indices of
the key-pair sequence and rotation sequence will have the same value, that is, j = l . In this nota-
tion the key-pair Cl , cl() is also the l th key-pair in the sequence of key-pairs controlled by C.
When the controlling key-pair is not singular, however, (i.e. multi-signature) then each rotation
operation may consume more than one key-pair from the sequence of controlling key-pairs. In
this case then the indices j and l may not always be equal, i.e. j ≠ l . Let the number of control-

19/80

ling key-pairs for the l th rotation be denoted Ll . The l th rotation thereby consumes Ll key-pairs
from the sequence of controlling key-pairs. The key-pairs consumed by the l th rotation form a
subsequence of length Ll . The subsequence of indices j for the subsequence of key-pairs for the
rotation l of length Ll may be denoted as follows.

rl , rl +1, rl + 2,…, rl + Ll −1[] (2.20)

where rl is the value of index j for the first key-pair in the subsequence. This means that

rl+1 = rl + Ll . (2.21)

The originating key-pair C 0, c0() is declared by an inception operation that creates the identi-
fier C. The inception operation may be thought of as a special case of rotation that is the zeroth
rotation operation, that is, l = 0 . Also let r0 = 0 be the value of the first index from the inception
or zeroth rotation. Given that r0 = 0 then the value of the index rl for l > 0 may be computed by
summing the lengths, Ll , of subsequences of key-pairs consumed by all the prior rotations. This
may be expressed as follows:

rl = Lii=0

l−1∑ l>0 . (2.22)

where r0 = 0 .

The subsequence of public keys for the l th rotation may be denoted as follows:

Crl ,…,Crl+Ll−1⎡⎣ ⎤⎦l , (2.23)

with

Cr0⎡⎣ ⎤⎦0 = C 0⎡⎣ ⎤⎦ . (2.24)

Suppose for example that the inception uses one key-pair, that is, L0 = 1and the following
three rotations use three, three, and four key-pairs respectively, that is, L1 = 3 , L2 = 3 , and
L3 = 4 . The resultant starting indices for each rotation subsequence are as follows:

r0 = 0

r1 = Lii=0

0∑ = L0 = 1

r2 = Lii=0

1∑ = L0 + L1 = 4

r3 = Lii=0

2∑ = L0 + L1 + L2 = 7

r4 = Lii=0

3∑ = L0 + L1 + L2 + L3 = 11

. (2.25)

Furthermore the resultant subsequences of public-keys for each rotation in order are as follows:

Cr0⎡⎣ ⎤⎦0 = C 0⎡⎣ ⎤⎦
Cr1 ,Cr1+1,Cr2+2⎡⎣ ⎤⎦1 = C1,C 2,C 3⎡⎣ ⎤⎦
Cr2 ,Cr2+1,Cr2+3⎡⎣ ⎤⎦2 = C 4 ,C 5,C 6⎡⎣ ⎤⎦
Cr3 ,Cr3+1,Cr3+2,Cr3+4⎡⎣ ⎤⎦3 = C 7,C 8,C 9,C10⎡⎣ ⎤⎦

(2.26)

20/80

With the nomenclature presented above we can now more efficiently describe the protocol.

2.4 Miscellaneous
2.4.1 Sufficient Majority

Some parts of KERI are dependent on what is called a sufficient majority. Given an allowed
number of faulty members F, the number of sufficient majority of members M less than the total
N may be pre-determined. The smallest possible majority is called a simple majority. The simple
majority M̂ For N members is given by,

M̂ = int N
2

⎛
⎝⎜

⎞
⎠⎟
+1 , (2.27)

where the value of the int() function is the nearest integer less than or equal to its argument. In
some cases a sufficient majority is a super majority that is greater than a simple majority.
The set of entities that form a sufficient majority is called a quorum. If N is the number of
entities and M is the number of a sufficient majority of N then the number of possible quorums is
given by the number of distinct combinations of N taken M at a time. This is represented as,

C(N ,M) = N!
M !(N −M)!

. (2.28)

Typically at each stage of processing of any given event, an algorithm may require that a quo-
rum of members participate in making a decision. The members of the quorum at one stage may
be different from the members of the quorum at another stage. Quorum membership at any
stage, however, may be a universally verifiable item of knowledge. Changes in quorum member-
ship are provided by rotation events that also change quorum membership. These are therefore
quorum membership events.

2.4.2 Sequence Numbers
Each event has a unique monotonically increasing sequence number. This may be used to or-

der sort, index, and organize events. In the following messages the field label t is used to repre-
sent the sequence number with a numeric subscript to indicate the order of sequence number
such as t0, t1,…, tn . A simple format for t is a counter with integer values starting at 0 that incre-
ment by 1 for each new event. When the sequence number is a counter then the subscript value
of t will equal the value of the sequence number, that is,

ti = i , (2.29)

and
t0 = 0, t1 = 1,…, tn = n . (2.30)

2.4.3 Date-time Stamps
It may be convenient to include absolute (real, astronomical) date-time stamps in messages or

log entries. One well known date-time format is the ISO-8601 standard [11; 12]. An ISO-8601
time zone aware UTC date time stamp with up to nanosecond resolution has the following form:

YYYY-MM-DDTHH:MM:SS.mmmmmmmmm+00:00 (2.31)
An example is

2000-01-01T00:00:00.000000000+00:00 (2.32)

21/80

2.4.4 Cypher Suite
Best practices cryptography limits the options that user may choose from for the various cryp-

tographic operations, such as signing, encrypting, and hashing to a suite of balanced and tuned
set of protocols, one for each operation. Each member of the set should be the one and only one
best suited to that operation. This prevents the user from making bad choices. Many key-repre-
sentation schemes allow the user the freedom to specify the features of the operation indepen-
dently. This is usually a very bad idea [4; 23; 24]. Users should not be custom combining differ-
ent features that are not part of a best practices cypher suite. Each custom configuration may be
vulnerable to potential attack vectors. The suggested approach is to narrowly specify a single
cypher suite family and version for each operation. If an exploit is discovered for a member of a
suite and then fixed, the suite is updated wholly to a new version. The number of allowed cypher
suites should be minimized to those essential for compatibility but no more. This approach in-
creases expressive power because only one syntactic element is needed to specify a suite instead
of a different element per feature.

In the following event expressions a particular cryptographic system or cypher suit for creating
the signatures is either assumed known or else is explicitly specified. A suggested specification
format is that described in the W3C DID (Decentralized Identifier) report for the type field in the
authentication section of a DID Document [25]. This is single string that includes a cypher suite
family, operation, and version. For example the family = Ed25519, operation = verification, and
version = 2018 may be expressed as follows:

Ed25519VerificationKey2018 (2.33)
One way to specify the cypher suite is to include an additional kind field in each message with a
value (cypher suite type) as given above. The problem with that approach is that all the public
keys must use the same kind. This does not allow support for rotations that change or upgrade
the cypher suite nor does it support a mixture of cypher suites for multi-signature schemes. In
general, the approach used herein is to treat each occurrence of a public key field in a message
as a data structure that may optionally include the cypher suite type in a kind field when not us-
ing the default cypher suite kind if any. An example data structure in JSON follows:

{
 key: "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 kind: Ed25519VerificationKey2018
}

2.4.5 Encoding
Public keys, signatures, and digests are large integers. They must be encoded in order to be

consistently represented when stored, transmitted over networks, or included in serialized data
structures that are signed or hashed. A suggested approach is to use the RFC-4648 Base64 URL-
File Safe encoding standard. as per RFC-4648 [13] to encode these items. The contents of the
messages in this work are intended to be processed by computer algorithms and not transcribed
by humans. Consequently Base64 is more appropriate and more compact than other representa-
tions such as Base58-check. The main advantage of Base58-check is that it is less prone to error
when manually transcribing. Because this behavior should be discouraged in general Base58-
check is more cumbersome, Base64 is preferred.

2.4.6 Serialization
A suggested approach for serializing data structures or tuples is to use the JSON standard. One

of the limitations of JSON is that the field order of a serialized JavaScript object is not norma-
22/80

tive, that is, a valid JSON serialization does not guarantee the order of appearance of the fields
within a JavaScript object (or Python dict) that results from the deserialization. Likewise white-
space in a JSON serialization is not normative. Consequently round trip serializations and dese-
rializations may not be identical and therefore would not verify against the same cryptographic
signature. This is the so called canonicalization problem. One simple solution to this problem
when using JSON is that the data associated with a signature may only be serialized once by the
signer. Users of the data may deserialize but never re-serialize unless they also re-sign. Any
compliant JSON deserialization will produce an equivalent Javascript object (same field names
and values but order and whitespace are ignored).

2.4.7 Signatures
In many protocols the signatures are attached to the serialized data in one data string. This en-

counters another limitation of JSON, that is, many JSON implementations raise an error if a de-
serialization attempt on a string does not consume all the characters in the string. Thus a hybrid
data string that consists of a serialized JSON object followed by a signature string might be diffi-
cult to deserialize with some JSON implementations. A portable approach, however, is to con-
catenate the signature but separate it from the JSON serialization with a unique string of charac-
ters that will not be produced by a JSON serializer. A parser first searches for the separator string
and then separately extracts both the JSON serialization and the signature. One such human
friendly separator string is the 4 character sequence of whitespace characters, CR LF CR LF (in
ascii notation), where CR represents the CarriageReturn character (ASCII 13) and LF represents
the LineFeed character (ASCII 10). In escaped notation this string is "\r\n\r\n". If these separator
characters were to appear within a quoted string they would be doubled escaped by the JSON se-
rializer. Furthermore, this separator string does not appear in a Base64 serialization. Consequent-
ly this same separator can be used to attach multiple signatures. This approach makes it easy for
a parser to separate, extract, and verify the serialized data with the attached signature(s) without
deserializing the JSON. In this work serializations consist of the JSON followed by one or more
sets of the separator "\r\n\r\n' and a JSON string delimited (double quoted) Base64 serialization
of a signature. An example follows:

{
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 1,
 "kind": "ek",
 "signer": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "ensuer": "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE="
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="

When using HTTP as the transport it may be more convenient to attach the signatures in an
HTTP Header. One way to do this is with a custom header. The format of the custom Signature
header follows the conventions of RFC7230 [10]. The header format is as follows:

Signature: headervalue

Headervalue:
 tag = "signature"

23/80

or
 tag = "signature"; tag = "signature" ...

where the name of each tag is given a unique string to identify each signature.
Each signature tag value is a doubly quoted string "" that contains the actual signature in Base64
url safe format.
An optional tag named type may be present of the form:

 kind = "kind"

where the value of the kind tag is a string that specifies the cypher suit type used to create the
signature(s) within that header. All signatures within a header must be of the same cypher suite
type.
Multiple Signature headers may be present and the set of signatures are the union of all the
signatures from the Signature headers.
If the same signature tag appears multiple times then only the last occurrence is used.

An example is shown below with a kind tag, one signature tag named “signer” and the other
signature tag named “ensuer”.

Signature:
kind="Ed25519VerificationKey2018";signer="Y5xTb0_jTzZYrf5SSEK2f3
LSLwIwhOX7GEj6YfRWmGViKAesa08UkNWukUkPGuKuu-EAH5U-
sdFPPboBAsjRBw=="; ensuer="Xhh6WWGJGgjU5V-
e57gj4HcJ87LLOhQr2Sqg5VToTSg-
SI1W3A8lgISxOjAI5pa2qnonyz3tpGvC2cmf1VTpBg=="

The convention is that each signature tag name must equal a field name in the JSON body. The
associated JSON field value is the public key used to verify the signature provided in the corre-
sponding header value.

2.4.8 Event Ilk
It may be convenient to include in key events a key event ilk field that specifies what type of

event the message contains. This may aid in parsing the event message. The suggested field
name is ilk. Suggested ilk values and events are as follows: icp for inception event, rot for ro-
tation event, rct for event receipt message, itc for generic interaction event, dip for dele-
gated inception event, drt for delegated rotation event, dwd for domestic witness designation
event, and fwd for foreign witness designation event. Specific applications may use other event
ilks.

3 ONLINE ONE-TO-ONE PROTOCOL

In this version of the protocol there are no declared witnesses. The defined events reference
entities with identifiers that are bound to key-pairs. A controller has an identifier labeled C that
is bound to a key-pair C 0, c0() . Likewise a validator has an identifier labeled V that is bound to

a key-pair V 0, v0() . Because the likelihood of collision of public keys generated with crypto-
graphic strength digital key systems is remote, therefore, with loss of generality, in the event de-

24/80

scriptions below, the identifier bound to a key-pair may be equal to the public key. For example,
C = C 0 and V =V 0 . Using only the public key enables the core parts of a KERI implementation
to be independent of the syntax for specific types of self-certifying identifiers. In the case of
DIDs this means that the KERI core may be DID method independent. Indeed the KERI core
may be made independent of any identifier syntax other than that the identifier be uniquely
bound to a cryptographic strength signing (public, private) key-pair. The universally unique
identifier for the core may be set equal to the public key and identifier specific syntax for other
sections of the identifier may be handled by an identifier specific client.

It is also assumed that the cypher suite type used to generate signatures is either known or else
each appearance of a public key (when not the base identifier) in the events is actually a data
structure that includes the public key and an optional cypher suite type when it is not the default
type (see the discussion in Section 2.4). This caveat applies to the public keys referenced in the
events below.

In the following event descriptions, the index k indexes all events of any ilk and index l index-
es only rotation events. In general the kth event may not be the same as the l th rotation event.
Only when the all events are rotation events will k = l . The inception event is special it always
has k = l = 0 . The inception event is considered a special case of a rotation event. Other events
may be interspersed between the inception event and the first rotation event as well as between
subsequent rotation events.

There are two types of events, these are chained and unchained. Chained events include a di-
gest of the previous event (except the inception event). To avoid redundancy, because, the only
difference between chained and unchained events is the inclusion of the digest field in chained
events, the event definitions will provide a full description of the chained version but only pro-
vide the denotation of the unchained version. The inception event has no digest because it is the
first or zeroth event in the sequence. The digest backward chains the events and reinforces the
sequence ordering provided by the sequence number (see Section 2.8). Some applications where
economy of expression is more important than security may choose to use the non-chained ver-
sions of the protocols. To restate, when chained the order of events is provided by a sequence
number but reinforced with a backward chained digest. The sequence of digests and the se-
quence number must correspond.

3.1 Single Signature
In this scheme only a single key-pair controls the identifier at any time. A multi-signature

scheme is provided later.

3.1.1 Inception Event
Given a controller with identifier labeled C the serialized key inception event message labeled

Cε0
 is denoted as follows:

ε0 = Cε0
= C, t0,icp,C

0,C1 σ
C0

, (3.1)

where the identifier C is uniquely bound to the key-pair C 0, c0() , t0 = 0 is the unique monotoni-
cally increasing sequence number for this event , icp is the event ilk representing an inception
event, the controlling signing key-pair is indicated by C 0 , which is the public key from the key-
pair C 0, c0() that is controlled by the private key, c0 , the ensuing pre-rotated key-pair is indicat-

ed byC1 which is the public key from the key-pair C1, c1() that is controlled by the private key,

25/80

c1 , and σ
C0

is the digital signature of the contents of the brackets, , made with private key

c0 . The inception event demonstrates control over the identifier public key C via the signature
σ

C0
. It implicitly declares that C 0, c0() is the current controlling key-pair and that C1, c1()will

be the ensuing controlling key pair after rotation.
A tuple of the labels for the fields in the event may be denoted as follows:

id, sn, ilk, signer, ensuer() (3.2)

These labels may be used as the field names in a JSON serialized version of the key inception
event as follows:

{
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 0,
 "ilk": "icp",
 "signer": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "ensuer": "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE="
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="

As mention above, when the cypher suite is not know then the appearance of a public key (not
the “id” field) may be replaced with a data structure that include both the public key and the
cypher suit kind. This may be denoted as follows:

ε0 = Cε0
= C, t0,icp, C

0, kind(), C1, kind() σ C0
. (3.3)

where kind is a string defining the cypher suite. The value of each appearance of kind may be
different.

A serialized version of this representation follows:

{
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 0,
 "ilk": "icp",
 "signer":
 {
 "key":"Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "kind":"Ed25519VerificationKey2018"
 },
 "ensuer":
 {
 "key":"Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
 "kind":"EcdsaSecP256VerificationKey2018"
 },

}
\r\n\r\n

26/80

"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="

Although not provided in other sections this example may be used as a reference for how to
modify the JSON serializations to accommodate varied kind values for the various public keys.

3.1.2 Inception Event Receipt
A validator, V, may create an inception event receipt by signing with its associated key-pair. Its

signature of the inception event may be denoted as follows:

σV Cε0() =σV C, t0,icp,C
0,C1 σ

C0() . (3.4)

The associated event receipt may then be denoted using compact notation as follows:

ρV Cε0() = Cε0
σV = C, t0,icp,C

0,C1 σ
C0

σV . (3.5)

All events share the same key event receipt message format. This is described in Section 5.3.

3.1.3 Chained Rotation Event
The l th rotation event operation occurring as the kth event in the sequence for a controller la-

beled C that is provided via a serialized key rotation event message labeled, Cεk
, may be denot-

ed as follows:

ε k = Cεk
= C, tk ,η ε k−1(), rot,Cl+1 σ

Cl−1σ Cl (3.6)

where the identifier C is uniquely bound to the key-pair C 0, c0() , with public key, C 0 , which is

controlled by the private key, c0 , tk = k is the unique monotonically increasing sequence

number for this event , η ε k−1() is the digest of the preceding, k −1()th event, rot is the event
ilk representing a rotation event,Cl+1 is the public key from the ensuing key-pair,
Cl+1, cl+1()which is controlled by the private key, cl+1 , and the pair of digital signatures σ

Cl−1

(erster) and σ
Cl (signer) made with private keys cl−1 and cl from key-pairs Cl−1, cl−1() and

Cl , cl() sign the contents of the brackets, . The inclusion of the erster signature chains the
signing authority of successive rotation events which provides additional protection against
forgery of key event rotation operations in a key event history as two keys must be exploited not
only one. In this notation the key-pair Cl , cl() is the l th key-pair in the pre-rotated sequence of

keys controlled by C. This means that the previous rotation event declared Cl−1, cl−1() as the

signing key-pair and Cl , cl() as the ensuing key-pair but now this rotation event implicitly

declares Cl , cl()as the current signing key-pair and explicitly declares Cl+1, cl+1() as the ensuing

pre-rotated key-pair in the sequence. This makes Cl−1, cl−1() the erstwhile (erster) signing key-
pair or erster.

As a clarifying example, when the first rotation event is also the next event after the inception
event then k = l = 1and may be denoted as follows:

ε1 = Cε1
= C, t1,η ε0(), rot,C 2 σ

C0
σ

C1
, (3.7)

27/80

where the identifier C is uniquely bound to the key-pair C 0, c0() , with public key, C 0 , which is

controlled by the private key, c0 , t1 = 1 is the sequence number for this event , rot is the event
ilk for rotation, C 2 is the public key from the ensuing key-pair C 2, c2() which is controlled by

private key, c2 , and the digital signatures σ
C0

and σ
C1

made with private keys c0 and c1 from

key-pairs C 0, c0() , C1, c1() sign the contents of the brackets, . The inception event declared

C1, c1() as the ensuing pre-rotated key pair which via this rotation event becomes the current

signing key-pair. This rotation event also declares C 2, c2() as the (next) second pre-rotated key-
pair.
A tuple of the field labels may be denoted as follows:

id, sn, digest, ilk, ensuer() (3.8)

These labels may be used as the field names in a JSON serialized version of the key rotation
event message as follows:
{
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 1,
 "digest": "GEj6YfRWmGViKAesa08UkNWukUkPGsdFPPboBAsjRBw=",
 "ilk": "rot",
 "ensuer": "UhL0JRaU2_RxFP0AL43wYn148Xq5YqaL6L48pf0fu7I="
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="
\r\n\r\n
"KFFgf8i0tDq8XGizaCgAeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQ
oYKBYrPPxAoIc1i5SHCIDS8=="

3.1.4 Chained Rotation Event Receipt
A validator, V, may create a rotation event receipt by signing with its associated key-pair. Its

signature of the l th rotation event operation occurring as the kth event in the sequence may be
denoted as follows:

σV Cεk() =σV C, tk ,η ε k−1(), rot,Cl+1 σ
Cl−1σ Cl() . (3.9)

The associated event receipt may then be denoted using compact notation as follows:

ρV Cεk() = Cεk
σV = C, tk ,η ε k−1(), rot,Cl+1 σ

Cl−1σ Cl σV . (3.10)

All events share the same key event receipt message format. This is described in Section 5.3.

3.1.5 Unchained Rotation Event
When unchained the order of events is provided solely by the sequence number. In this case,

the l th rotation event operation occurring as the kth event in the sequence for a controller labeled

28/80

C that is provided via a serialized key rotation event message labeled, Cεk
, may be denoted as

follows:

ε k = Cεk
= C, tk , rot,Cl+1 σ

Cl−1σ Cl (3.11)

where the field definition are the same as provided in the definition of eq. 3.6. The associated
rotation event receipt and message are modified appropriately with the content above.

3.2 Multiple Signature
In this section the single signature scheme is extended to a multiple signature scheme. Review

Section 2.9 for a more in-depth definition of some of the associated terminology.

3.2.1 Inception Event
Given a controller with identifier labeled C the serialized multi-signature key inception event

message labeled Cε0
 is denoted as follows:

ε0 = Cε0
= C, t0,icp,C

0, K1,
⌢
C1 σ

C0
, (3.12)

where the identifier C is uniquely bound to the key-pair C 0, c0() , with public key, C 0 , which is

controlled by the private key, c0 , t0 = 0 is the unique monotonically increasing sequence num-
ber for this event , icp is the event ilk representing an inception event, the controlling signing
key-pair is indicated by C 0 , which is the public key from the key-pair C 0, c0() that is controlled

by the private key c0 , K1 , is the threshold number of required signatures out of L1 signers after

the ensuing rotation,
⌢
C1 = C1,…,CL1⎡⎣ ⎤⎦1 is the list of ensuing public keys that form a set of L1

potential signers for the ensuing rotation to a multi-signature, and σ
C0

is the digital signature of

the contents of the brackets, , made with private key c0 . The inception event demonstrates

control over the identifier public key C via the signature σ
C0

. It explicitly declares that C 0, c0()
is the current controlling key-pair and that K1 of the L1 signers in

⌢
C1 = C1,…,CL1⎡⎣ ⎤⎦1 will be the

ensuing controlling key-pairs after rotation (K of L multi-signature). In general the inception
may be considered as a special case of rotation, that is, the zeroth rotation that implies that
K0 = L0 = 1. and C = C 0 . The inception pre-rotates the subsequence C1,…,CL1⎡⎣ ⎤⎦ as the ensu-
ing set of key-pairs. The inception event demonstrates control of the identifier but is not multi-
signature itself. Consequently, when using a multiple signature scheme the inception event must
be immediately followed by a rotation event to activate the first set of multiple signatures de-
clared in the inception event. This rotation will immediately turn control over to the K of L mul-
ti-signature scheme previously specified in the inception event.

As a clarifying example, suppose the ensuing multi-signature is 2 of 3, that is, K1 = 2 and
L1 = 3 . The corresponding inception event may be denoted as follows:

Cε0
= C, t0,icp,C

0, 2, C1,C 2,C 3⎡⎣ ⎤⎦ σ
C0

, (3.13)

where C 0 , C1 , C 2 , and C 3 are public keys from their associated key-pairs.
A tuple of the field labels may be denoted as follows:

id, sn, ilk, signer, threshold, ensuers() (3.14)

29/80

These labels may be used as the field names in a JSON serialized version of the key inception
event as follows:

{
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 0,
 "ilk": "icp",
 "signer": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "threshold": 2,
 "ensuers":
 [
 "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
 "VrTkep6H-4HA8tr54sHON1vWl6FEQt27fThWoNZsa88=",
 "HA8tr54sHON1Qt27fThWoNZsa88VrTkep6H-4vWl6FE="
]
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="

3.2.2 Inception Event Receipt
A validator, V, may create an inception event receipt by signing with its associated key-pair. Its

signature of the inception event may be denoted as follows:

σV Cε0() =σV C, t0,icp,C
0, K1,

⌢
C1 σ

C0() , (3.15)

The associated event receipt may then be denoted using compact notation as follows:

ρV Cε0() = Cε0
σV = C, t0,icp,C

0, K1,
⌢
C1 σ

C0
σV . (3.16)

All events share the same key event receipt message format. This is described in Section 5.3.

3.2.3 Chained Rotation Event
The rotation event format enables changes to both the threshold and number of signatories

with each rotation. The l th multi-signature key rotation event event operation occurring as the
kth event in the sequence for a controller labeled C that is provided via a serialized key rotation
event message labeled, Cεk

, may be denoted as follows:

ε k = Cεk
= C, tk ,η ε k−1(), rot, Kl+1,

⌢
Cl+1,
⌢el ,
⌢sl
⌢σ l , (3.17)

where the identifier C is uniquely bound to the key-pair C 0, c0() , with public key, C 0 , which is

controlled by the private key, c0 , tk = k is the unique monotonically increasing sequence

number for this event , η ε k−1() is the digest of the preceding, k −1()th , event, rot is the event
ilk representing a rotation event, Kl+1 , is the threshold number of required signatures out of Ll+1
signers after the ensuing rotation,

⌢
Cl+1 = Crl+1 ,…,Crl+1+Ll+1−1⎡⎣ ⎤⎦l+1 is the list of ensuing public keys

that form a set of Ll+1 potential signers for the ensuing rotation to a multi-signature, rl+1 is the

starting index of the subsequence of controlling key-pairs for the l +1()th rotation (see Section

30/80

2.9), ⌢el = e0,…, eEl−1⎡⎣ ⎤⎦l is a list of length El of integer indices into the list, Crl−1 ,…,Crl−1+Ll−1−1⎡⎣ ⎤⎦ ,

of ersters (erstwhile signers) as indicated by an earlier rotation event, rl−1 is the starting index of

the subsequence of controlling key-pairs for the l −1()th rotation (see Section 2.9),
⌢sl = s0,…, sSl−1⎡⎣ ⎤⎦l is a list of length Sl of integer indices into the list, Crl ,…,Crl+Ll−1⎡⎣ ⎤⎦ , of

signers for this the l th rotation event but as declared in the l −1()th rotation event, rl is the
starting index of the subsequence of controlling key-pairs for the l th rotation (see Section 2.9),
and ⌢σ l is the set of digital signatures that sign the contents of the brackets, . The inclusion of
the ersters signatures chains the signing authority of successive rotation events which provides
additional protection against forgery of key event rotation operations in a key event history as
two sets of keys must be exploited not only one. The number of signatures in the set ⌢σ l is equal
to the sum of the lengths of the ersters and signers lists, that is, El + Sl . Each element of the
ersters and signers lists produce one signature. The appropriate index into the sequence of
controlling key-pairs is computed from the offset given by each element of associated ersters
and signers lists added to the starting index of the respective subsequence of key-pairs. This may
be denoted as follows:

. ⌢σ l =σ Ce0+rl−1…σ
CeEl−1+rl−1

σ
Cs0+rl…σ

CsSl−1+rl
(3.18)

In this derivation, the key-pair C j , c j() is the j th key-pair in a pre-rotated sequence of key-pairs
controlled by C. Each rotation indexed by l consumes one or more of these key-pairs.
Furthermore, the list of zero based integer indices of ersters ⌢el = e0,…, eEl−1⎡⎣ ⎤⎦l is of length El

and satisfies Kl−1 ≤ El ≤ Ll−1 . Each index refers to a key-pair from the ordered list of public keys
Crl−1 ,…,Crl−1+Ll−1−1⎡⎣ ⎤⎦ taken as a subsequence of the set of all C j , c j() . The indices may be used to

generate a list of signing ersters with the notation Ce0+rl−1 ,…,CeEl−1+rl−1⎡⎣ ⎤⎦ (see Section 2.9). From

this list the associated El signatures σ
Ce0+rl−1…σ

CeEl−1+rl−1
 are produced. Likewise, the list of zero

based integer indices of signers ⌢sl = s0,…, sSl−1⎡⎣ ⎤⎦l is of length Sl and satisfies Kl ≤ Sl ≤ Ll . Each

index refers to a key-pair from the list of public keys Crl ,…,Crl+Ll−1⎡⎣ ⎤⎦ taken as a subsequence of

the set of all C j , c j() . The indices may be used to generate a list of signing signers with the

notation Cs0+rl ,…,CsSl−1+rl⎡⎣ ⎤⎦ (see Section 2.9). From this list the associated Sl signatures

σ
Cs0+rl…σ

CsSl−1+rl
 are produced. Together there are El + Sl signatures attached to the event. The

combination comprises ⌢σ l defined in eq. 3.18.

This rotation event declares that the previously declared set of key-pairs in the subsequence
Crl ,…,Crl+Ll−1⎡⎣ ⎤⎦ as the new controlling set that replaces the set of key-pairs in the subsequence

Crl−1 ,…,Crl−1+Ll−1−1⎡⎣ ⎤⎦ . Furthermore this rotation event declares that the set of key-pairs in the sub-

sequence
⌢
Cl+1 = Crl+1 ,…,Crl+1+Ll+1−1⎡⎣ ⎤⎦l+1 will be the ensuing (pre-rotated) set.

As a clarifying example, let the sequence of inception event plus 3 rotation be as follows:

31/80

ε0 = C, t0,icp,C
0, 2, C1,C 2,C 3⎡⎣ ⎤⎦ σ

C0

ε1 = C, t1,η ε0(), rot, 2, C 4 ,C 5,C 6⎡⎣ ⎤⎦, 0[]1 , 0, 2[]1 σ
C0
σ

C1
σ

C3

ε2 = C, t2,η ε1(), rot, 3, C 7,C 8,C 9,C10⎡⎣ ⎤⎦, 1, 2[]2 , 0,1[]2 σ
C2
σ

C3
σ

C4
σ

C5

ε3 = C, t3,η ε2(), rot, 2, C11,C12,C13⎡⎣ ⎤⎦, 0, 1, 2[]3 , 1, 2, 3[]3 σ
C4
σ

C5
σ

C6
σ

C8
σ

C9
σ

C10

. (3.19)

The inception event, ε0 , always implies that K0 = 1 , L0 = 1 , and r0 = 0 . From this we can
compute r1 = 1 . The inception event also declares that K1 = 2 and by the given length of the en-
suers list that L1 = 3 . From this we can compute r2 = 4 . These declarations mean that the ensu-
ing multi-signature scheme will be 2 of 3. The signature is σ

C0
.

The first rotation event, ε1 , declares that K2 = 2 and by the given length of the ensuers list that
L2 = 3 . From this we can compute r3 = 7 . The ersters list in this first rotation event is of length
E1 = 1 . Because K0 = 1 and L0 = 1 , it may have only one entry. From its entry, e0 = 0[]1 we may
compute the index j = e0 + r0 = 0 + 0 = 0 of the associated key-pair. This gives the derived list of
ersters as C 0⎡⎣ ⎤⎦ . This corresponds to the original key-pair for the identifier. The signers list in
this rotation must have at least K1 = 2 but may have up to L1 = 3 entries. In this case it has
S1 = 2 entries, s0 = 0, s1 = 2[]1 . From these entries we may compute the indices of the signing
key-pairs. These indices are j = s0 + r1 = 0 +1= 1 and j = s1 + r1 = 2 +1= 3 . This gives the de-
rived list of signers as C1,C 3⎡⎣ ⎤⎦ . The associated signatures are σ

C0
σ

C1
σ

C3
.

The second rotation event, ε2 , declares that K3 = 3 and by the given length of the ensuers list
that L3 = 4 . From this we can compute r4 = 11. The ersters list in this rotation must have at least
K1 = 2 but may have up to L1 = 3 entries. In this case it has 2 entries. From its entries,
e0 = 1, e1 = 2[]2 and r1 = 1 we may derive the list of ersters as C 2,C 3⎡⎣ ⎤⎦ . The signers list in this

rotation must have at least K2 = 2 but may have up to L2 = 3 entries. In this case is has 2 en-
tries. From its entries s0 = 0, s1 = 1[]2 and r2 = 4 . we may derive the list of signers as C 4 ,C 5⎡⎣ ⎤⎦ .
The associated signatures are σ

C2
σ

C3
σ

C4
σ

C5
.

The third rotation event, ε3 , declares that K4 = 2 and by the given length of the ensuers list
that L4 = 3 . From this we can compute r5 = 14 . The ersters list in this rotation must have at least
K2 = 2 but may have up to L2 = 3 entries. In this case it has 3 entries. From its entries,
e0 = 0, e1 = 1, e1 = 2[]3 and r2 = 4 we may derive the list of ersters as C 4 ,C 5,C 6⎡⎣ ⎤⎦ . The signers

list in this rotation must have at least K3 = 3 but may have up to L3 = 4 entries. In this case is
has 3 entries. From its entries s0 = 1, s1 = 2, s1 = 3[]3 and r3 = 7 . we may derive the list of signers

as C 8,C 9,C10⎡⎣ ⎤⎦ . The associated signatures are σ
C4
σ

C5
σ

C6
σ

C8
σ

C9
σ

C10
.

A tuple of the field labels may be denoted as follows:
id, sn, digest, ilk, threshold, ensuers, ersters, signers() (3.20)

These labels may be used as the field names in a JSON serialized version of the key rotation
event message, ε1 , as follows:

32/80

{
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 1,
 "digest": "GEj6YfRWmGViKAesa08UkNWukUkPGsdFPPboBAsjRBw=",
 "ilk": "rot",
 "threshold": 2,
 "ensuers":
 [
 "WoNZsa88VrTkep6HQt27fTh-4HA8tr54sHON1vWl6FE=",
 "8tr54sHON1vWVrTkep6H-4HAl6FEQt27fThWoNZsa88=",
 "VrTkep6HHA8tr54sHON1Qt27fThWoNZsa88-4vWl6FE="
],
 "ersters": [0],
 "signers": [0,2]
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="
\r\n\r\n
"KFFgf8i0tDq8XGizaCgAeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQ
oYKBYrPPxAoIc1i5SHCIDS8=="
\r\n\r\n
"Hot0pmdWAcgTo5sKFFgf8i0tDq8XGizaCgAeYbsD8iAuSQAfnH5U6wiIGpVNJQQ
oYKBYrPPxAoIc1i5SHCIDS8=="

3.2.4 Chained Rotation Event Receipt
A validator, V, may create a rotation event receipt by signing with its associated key-pair. Its

signature of the l th rotation event operation occurring as the kth event in the sequence may be
denoted as follows:

σV Cεk() . (3.21)

In longer form this may be denoted as follows:

σV C, tk ,η ε k−1(), rot, Kl+1,
⌢
Cl+1,
⌢el ,
⌢sl
⌢σ l() . (3.22)

The associated event receipt may then be denoted using compact notation as follows:

ρV Cεk() = Cεk
σV . (3.23)

In longer form as follows:

C, tk ,η ε k−1(), rot, Kl+1,
⌢
Cl+1,
⌢el ,
⌢sl
⌢σ l σV . (3.24)

All events share the same key event receipt message format. This is described in Section 5.3.

3.2.5 Unchained Rotation Event
The rotation event format enables changes to both the threshold and number of signatories

with each rotation. When unchained the order of events is provided solely by the sequence num-
ber. In this case, the l th multi-signature key rotation event event operation occurring as the

33/80

kth event in the sequence for a controller labeled C that is provided via a serialized key rotation
event message labeled, Cεk

, may be denoted as follows:

ε k = Cεk
= C, tk , rot, Kl+1,

⌢
Cl+1,
⌢el ,
⌢sl
⌢σ l (3.25)

where the field definition are the same as provided in the definition of eq. 3.17. The associated
rotation event receipt and message are modified appropriately with the content above.

4 OFFLINE ONE-TO-ONE OR ONE-TO-MANY PROTOCOL

In this version of the protocol there are declared witnesses and declared changes or “rotations”
to the witness list. The following events reference entities with identifiers that are bound to key-
pairs. A controller has an identifier labeled C that is bound to a key-pair C 0, c0() . Likewise a

validator has an identifier labeled V that is bound to a key-pair V 0, v0() . A set of witnesses in-

dexed by subscript i each have an identifier Wi i=0,1, 2,… that is bound to a key-pair Wi
0, wi

0() .

For example witness identifier W0 is bound to W0
0 , w0

0() . Because the likelihood of collision of
public keys generated with cryptographic strength digital key systems is remote, therefore, with
loss of generality in the event descriptions below, the identifier bound to a key-pair may be equal
to the public key. For example, C = C 0 , V =V 0 , and Wi =Wi

0 . Using only the public key en-
ables the core parts of a KERI implementation to be independent of the syntax for specific types
of self-certifying identifiers. In the case of DIDs this means that the KERI core may be DID
method independent. Indeed the KERI core may be made independent of any identifier syntax
other than that the identifier be uniquely bound to a cryptographic strength signing (public, pri-
vate) key-pair. The public key becomes the universally unique identifier for the core. Likewise
identifier specific syntax for other sections of the identifier may be handled by an identifier spe-
cific client.

It is also assumed that the cypher suite kind used to generate signatures is either known or else
each appearance of a public key in the events is actually a data structure that includes the public
key and an optional cypher suite kind when it is not the default kind (see the discussion in Sec-
tion 2.4). This caveat applies to the public keys (not the id field) referenced in the events below.

In the following event descriptions, the index k indexes all events of any ilk and index l index-
es only rotation events. In general the kth event may not be the same as the l th rotation event.
Only when the all events are rotation events will k = l . The inception event is special it always
has k = l = 0 . The inception event is considered a special case of a rotation event. Other events
may be interspersed between the inception event and the first rotation event as well as between
subsequent rotation events.

There are two types of events, these are chained and unchained. Chained events include a di-
gest of the previous event (except the inception event). To avoid redundancy, because, the only
difference between chained and unchained events is the inclusion of the digest field in chained
events, the event definitions will provide a full description of the chained version but only pro-
vide the denotation of the unchained version. The inception event has no digest because it is the
first or zeroth event in the sequence. The digest backward chains the events and reinforces the
sequence ordering provided by the sequence number (see Section 2.8). To restate, when chained
the order of events is provided by a sequence number but reinforced with a backward chained di-
gest. The sequence of digests and the sequence number must correspond.

34/80

4.1 Single Signature
In this scheme only a single key-pair controls the identifier at any time. A multi-signature

scheme is provided later.

4.1.1 Inception Event
Given a controller with identifier labeled C the serialized key inception event message labeled

Cε0
 is denoted as follows:

ε0 = Cε0
= C, t0,icp,C

0,C1,M 0,
⌢
W0 σ

C0
, (4.1)

where the identifier C is uniquely bound to the key-pair C 0, c0() , with public key, C 0 , which is

controlled by the private key, c0 , t0 = 0 is the unique monotonically increasing sequence num-
ber for this event , icp is the event ilk representing an inception event, the controlling signing
key-pair is indicated by C 0 , which is the public key from the key-pair C 0, c0() that is controlled

by the private key, c0 , the ensuing pre-rotated key-pair is indicated byC1which is the public key
from the key-pair C1, c1() that is controlled by the private key, c1 , the tally, M 0 , is the number
of witnesses sufficient for the event to be deemed valid by a judge (validator), witness list⌢
W0 = W0 ,… ,WN−1⎡⎣ ⎤⎦0 contains a list of the identifiers (public keys) of N designated witnesses,

and σ
C0

is the digital signature of the contents of the brackets, , made with private key c0 .
The inception event demonstrates control over the identifier public key C via the signature σ

C0
.

It declares that C 0, c0() is the current controlling key-pair and that C1, c1()will be the ensuing
controlling key pair after rotation.
This off-line inception event designates witnesses to provide an additional layer of trust. The tal-
ly M 0 , indicates the number of confirming witness receipts from the witness list that a judge or
validator must obtain before validating the event. The tally represents a quorum size for valida-
tion and may be a sufficient majority. Each non-faulty member of the set of designated witnesses
will have a copy of the inception event and thereby as long as one witness remains no-faulty that
witness’ copy will enable detection by a validator of a later exploit that creates an alternative in-
ception event.
As a clarifying example, with a tally of 2 out of a total of 3 witnesses the inception event may be
denoted as follows:

ε0 = Cε0
= C, t0,icp,C

0,C1, 2, W0,W1,W2[] σ C0
, (4.2)

where C 0 , C1 , W0 , W1 , and W2 are public keys from their associated key-pairs.

A tuple of the field labels may be denoted as follows:
id, sn, ilk, signer, ensuer, tally, witnesses() (4.3)

These labels may be used as the field names in a JSON serialized version of the key inception
event as follows:

{
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 0,

35/80

 "ilk": "icp",
 "signer": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "ensuer": "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
 "tally": 2,
 "witnesses":
 [
 "VrTkep6H-Qt27fThWoNZsa884HA8tr54sHON1vWl6FE=",
 "HON1vWl6FEQt27fThWoNZsa88VrTkep6H-4HA8tr54s=",
 "ThWoNZsa88VrTkeQt27fp6H-4HA8tr54sHON1vWl6FE=",
]
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="

4.1.2 Inception Event Receipt
A witness, Wi (or validator), may create an inception event receipt by signing with its associat-

ed key-pair. Its signature of the inception event may be denoted as follows:

.σWi
Cε0() =σWi

C, t0,icp,C
0,C1,M 0,

⌢
W0 σ

C0() (4.4)

The associated event receipt may then be denoted using compact notation as follows:

ρWi
Cε0() = Cε0

σWi
= C, t0,icp,C

0,C1,M 0,
⌢
W0 σ

C0
σWi

. (4.5)

All events share the same key event receipt message format. This is described in Section 5.3.

4.1.3 Chained Rotation Event
The l th rotation event operation occurring as the kth event in the sequence for a controller la-

beled C that is provided via a serialized key rotation event message labeled, Cεk
, may be denot-

ed as follows:

ε0 = Cεk
= C, tk ,η ε k−1(), rot,Cl+1,Ml ,

⌢
Xl ,
⌢
Yl σ

Cl−1σ Cl (4.6)

where the identifier C is uniquely bound to the key-pair C 0, c0() , with public key, C 0 , which is

controlled by the private key, c0 , tk = k is the unique monotonically increasing sequence

number for this event, η ε k−1() is the digest of the preceding, k −1()th , rot is the event ilk

representing a rotation event, Cl+1 is the public key from the ensuing key-pair, Cl+1, cl+1()which

is controlled by the private key, cl+1 , the l th tally, Ml , is the number of witnesses sufficient for
the event to be deemed valid by a judge (validator), the l th exclude (omit) witness list
⌢
Xl = X0,… , XOl−1

⎡⎣ ⎤⎦l contains a list of the identifiers (public keys) of Ol designated witnesses

that are to be removed from the list of witnesses, the l th include (append) witness list
⌢
Yl = Y0,… ,YPl−1⎡⎣ ⎤⎦l contains a list of the identifiers (public keys) of Pl designated witnesses that

are to be added to the list of witnesses, event, and the digital signatures σ
Cl−1 (erster) and σ

Cl

(signer) made with private keys cl−1 and cl from key-pairs Cl−1, cl−1() and Cl , cl() sign the

36/80

contents of the brackets, .The inclusion of the erster signature chains the signing authority of
successive rotation events which provides additional protection against forgery of key event
rotation operations in a key event history as two keys must be exploited not only one. In this
notation the key-pair Cl , cl() is the l th key-pair in the pre-rotated sequence of keys controlled by

C. This means that the previous rotation event declared Cl−1, cl−1() as the signing key-pair and

Cl , cl() as the ensuing key-pair but now this rotation event implicitly declares Cl , cl()as the

current signing key-pair and explicitly declares Cl+1, cl+1() as the ensuing pre-rotated key-pair in

the sequence. This makes Cl−1, cl−1() the erstwhile (erster) signing key-pair or erster.

As a clarifying example, suppose the inception event is as follows:

ε0 = Cε0
= C, t0,icp,C

0,C1, 2, W0,W1,W2[] σ C0
, (4.7)

where C 0 and C1 are the public keys of the originating and first pre-rotated key-pair, the
incepting tally is 2 out of 3 witnesses, W0 , W1 , and W2 are the public keys of the witnesses.
Suppose also that the first rotation event is also the next event after the inception event. In this
case k = l = 1 . Further suppose that the new tally is 2 out of 3 witnesses with one pruned witness
from and one grafted witness onto the incepting set of witnesses. This event may be denoted as
follows:

Cε1
= C, t1,η ε0(), rot,C 2, 2, X0[]1 , Y0[]1 σ

C0
σ

C1
, (4.8)

where C 2 is the public key of the ensuing pre-rotated key-pair, X0 is the public key of the pruned
witness and Y0 is the public key of the grafted witness.

A tuple of the field labels may be denoted as follows:
id, sn, digest, ilk, ensuer, tally, prune, graft() (4.9)

These labels may be used as the field names in a JSON serialized version of the key rotation
event message as follows:
{
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 1,
 "digest": "GEj6YfRWmGViKAesa08UkNWukUkPGsdFPPboBAsjRBw=",
 "ilk": "rot",
 "ensuer": "UhL0JRaU2_RxFP0AL43wYn148Xq5YqaL6L48pf0fu7I=",
 "tally": 2,
 "prune":
 [
 "VrTkep6H-Qt27fThWoNZsa884HA8tr54sHON1vWl6FE=",
],
 "graft":
 [
 "HA8tr54sHON1vWl6FEVrTkep6H-Qt27fThWoNZsa884=",
]
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC

37/80

IDS8KFFgf8i0tDq8XGizaCg=="
\r\n\r\n
"KFFgf8i0tDq8XGizaCgAeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQ
oYKBYrPPxAoIc1i5SHCIDS8=="

4.1.4 Chained Rotation Event Receipt
A witness, Wi (or validator), may create an inception event receipt by signing with its associat-

ed key-pair. Its signature of the l th rotation event operation occurring as the kth event in the se-
quence may be denoted as follows:

σWi
Cεk() , (4.10)

which in longer form is as follows:

σWi
C, tk ,η ε k−1(), rot,Cl+1,Ml ,

⌢
Xl ,
⌢
Yl σ

Cl−1σ Cl() . (4.11)

The associated event receipt may then be denoted using compact notation as follows:

ρWi
Cεk() = Cεk

σWi
, (4.12)

which in longer form as follows:

C, tk ,η ε k−1(), rot,Cl+1,Ml ,
⌢
Xl ,
⌢
Yl σ

Cl−1σ Cl σWi
. (4.13)

All events share the same key event receipt message format. This is described in Section 5.3.

4.1.5 Unchained Rotation Event
When unchained the order of events is provided solely by the sequence number. In this case,

the l th rotation event operation occurring as the kth event in the sequence for a controller labeled
C that is provided via a serialized key rotation event message labeled, Cεk

, may be denoted as
follows:

ε k = Cεk
= C, tk , rot,Cl+1,Ml ,

⌢
Xl ,
⌢
Yl σ

Cl−1σ Cl (4.14)
where the field definition are the same as provided in the definition of eq. 4.6. The associated
rotation event receipt and message are modified appropriately with the content above.

4.2 Witness Rotations
In both the chained and unchained rotation events the set of designated witnesses may be

changed. This may be thought of as rotating the witness list. This facility gives the controller the
ability to not only rotate keys that may have become exposed but also witnesses that may be un-
responsive or compromised. Both the members and the total number of designated witnesses
may be changed by the rotation event. This allows the controller to prune faulty witnesses and
graft on new ones.

The resultant set of designated witnesses may be denoted as follows:
Wl = Wl−1 −X l()∩Yl (4.15)

where Wl is the set of witnesses after the current, l th , rotation, Wl−1 is the set of witnesses after

the previous, l −1()th , rotation, X l is the set of newly excluded witnesses from Wl−1 , and Yl is
the set of newly included witness in Wl . The following set value properties apply:

38/80

X l ⊆Wl−1 , Y1 ⊄Wl−1 , and X l ⊄Wl . (4.16)

The total, Nl , of witnesses after the l th rotation may be computed as follows:

Nl = Nl−1 −Ol + Pl (4.17)

where Nl−1 is the total after the l −1()th rotation, Ol is the number of witnesses newly removed
by the l th rotation, and Pl is the number of witnesses newly added by the by the l th rotation. The
the l th tally, Ml must satisfy:

Ml ≤ Nl . (4.18)

Let represent the cardinality (number of elements) of a set. Then we have the following:

X l =Ol , Yl = Pl , and Wl = Nl . (4.19)

Witness designation adds a layer of trust. The tally Ml , indicates the number of confirming
witness receipts from the witness list that a judge or validator must obtain before validating the
event. The tally represents a quorum size for validation and may be a sufficient majority. Each
non-faulty member of the set of designated witnesses will have a copy of the rotation event and
thereby as long as one witness remains no-faulty that witness’ copy will enable detection by a
validator of a later exploit that creates an alternative version of that rotation event.

In addition, a judge or validator may also require confirmation via Ml−1 witness receipts from

the previous, l −1()th , set of witnesses. In this case there are two confirmation sets. For the first
confirmation, let U l−1 be the set of confirming witness receipts but of the l th rotation event.

There must be at least Ml−1 receipts from the l −1()th (prior) witness list. Let represent the
cardinality of set. These requirements mean that,

U l−1 ⊆Wl−1 , and U l−1 ≥ Ml−1 . (4.20)

Likewise for the second confirmation, let U l be the set of confirming witness receipts of the l th

rotation event. There must be at least Ml receipts from the l th (current) witness list. These re-
quirements mean that,

U l ⊆Wl , and U l ≥ Ml . (4.21)

The two confirmations together satisfy the following:
U l−1 ∪U l ≤ Ml−1 +Ml (4.22)

Requiring both confirmation sets means that an exploiter must not only exploit the prior pri-
vate keys but also a quorum of the prior set of witnesses. It also means that an exploited alterna-
tive event may not avoid detection by merely replacing all the witnesses from prior designations
with exploited witnesses. A judge or validator will not validate the rotation event unless there is
quorum of confirmation receipts from both sets of witnesses.

4.3 Multiple Signature
In this section the single signature scheme is extended to a multiple signature scheme. Review

Section 2.9 for a more in-depth definition of some of the associated terminology.

39/80

4.3.1 Inception Event
Given a controller with identifier labeled C the serialized multi-signature key inception event

message labeled Cε0
 is denoted as follows:

ε0 = Cε0
= C, t0,icp,C

0, K1,
⌢
C1 ,M 0,

⌢
W0 σ

C0
, (4.23)

where the identifier C is uniquely bound to the key-pair C 0, c0() , with public key, C 0 , which is

controlled by the private key, c0 , t0 = 0 is the unique monotonically increasing sequence num-
ber for this event , icp is the event ilk representing an inception event, the controlling signing
key-pair is indicated by C 0 , which is the public key from the key-pair C 0, c0() that is controlled

by the private key c0 , K1 , is the threshold number of required signatures out of L1 signers after

the ensuing rotation,
⌢
C1 = C1,…,CL1⎡⎣ ⎤⎦1 is the list of ensuing public keys that form a set of L1

potential signers for the ensuing rotation to a multi-signature, the tally, M 0 , is the number of
witnesses sufficient for the event to be deemed valid by a judge (validator), witness list
⌢
W0 = W0 ,… ,WN −1

⎡
⎣

⎤
⎦0

contains a list of the identifiers (public keys) of N designated witnesses,

and σ
C0

is the digital signature of the contents of the brackets, , made with private key c0 . In
general the inception may be considered as a special case of rotation, that is, the zeroth rotation
that implies that K0 = L0 = 1. and C = C 0 . The inception pre-rotates (declares) the subsequence
⌢
C1 = C1,…,CL1⎡⎣ ⎤⎦1 to be the ensuing set of key-pairs. The inception event demonstrates control

over the identifier public key C via the signature σ
C0

but is not multi-signature itself. Conse-
quently, when using a multiple signature scheme the inception event must be immediately fol-
lowed by a rotation event to activate the first set of multiple signatures declared in the inception
event. This rotation will immediately turn control over to the K of L multi-signature scheme pre-
viously specified in the inception event. The inception event explicitly declares that C 0, c0() is

the current controlling key-pair and that K1 of the L1 signers in
⌢
C1 = C1,…,CL1⎡⎣ ⎤⎦1 will be the

ensuing controlling key-pairs after rotation (K of L multi-signature).
This off-line inception event also designates witnesses to provide an additional layer of trust.

The tally M 0 , indicates the number of confirming witness receipts from the witness list that a
judge or validator must obtain before validating the event. The tally represents a quorum size for
validation and may be a sufficient majority. Each non-faulty member of the set of designated
witnesses will have a copy of the inception event and thereby as long as one witness remains no-
faulty that witness’ copy will enable detection by a validator of a later exploit that creates an al-
ternative inception event.

As a clarifying example, suppose the ensuing multi-signature is 2 of 3, that is, K1 = 2 and
L1 = 3 . Suppose also that the tally is 2 out of a total of 3 witnesses. The corresponding inception
event may be denoted as follows:

Cε0
= C, t0,icp, C

0, 2, C1,C 2,C 3⎡⎣ ⎤⎦, 2, W0,W1,W2[] σ C0
, (4.24)

where C 0 , C1 , C 2 , C 3 , W0 , W1 , and W2 are public keys from their associated key-pairs.

A tuple of the field labels may be denoted as follows:
40/80

id, sn, ilk, signer, threshold, ensuers, tally, witnesses() (4.25)

These labels may be used as the field names in a JSON serialized version of the key inception
event as follows:

{
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 0,
 "ilk": "icp",
 "signer": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "threshold": 2,
 "ensuers":
 [
 "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
 "VrTkep6H-4HA8tr54sHON1vWl6FEQt27fThWoNZsa88=",
 "HA8tr54sHON1Qt27fThWoNZsa88VrTkep6H-4vWl6FE="
],
 "tally": 2,
 "witnesses":
 [
 "VrTkep6H-Qt27fThWoNZsa884HA8tr54sHON1vWl6FE=",
 "HON1vWl6FEQt27fThWoNZsa88VrTkep6H-4HA8tr54s=",
 "ThWoNZsa88VrTkeQt27fp6H-4HA8tr54sHON1vWl6FE=",
]
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="

4.3.2 Inception Event Receipt
A witness, Wi (or validator), may create an inception event receipt by signing with its associat-

ed key-pair. Its signature of the inception event may be denoted as follows:

σWi
Cε0() =σWi

C, t0,icp,C
0, K1,

⌢
C1 ,M 0,

⌢
W0 σ

C0() , (4.26)

The associated event receipt may then be denoted as follows:

ρWi
Cε0() = Cε0

σWi
= C, t0,icp,C

0, K1,
⌢
C1 ,M 0,

⌢
W0 σ

C0
σWi

. (4.27)

All events share the same key event receipt message format. This is described in Section 5.3.

4.3.3 Chained Rotation Event
The rotation event format enables changes to both the threshold and number of signatories

with each rotation. The l th multi-signature key rotation event event operation occurring as the
kth event in the sequence for a controller labeled C that is provided via a serialized key rotation
event message labeled, Cεk

, may be denoted as follows:

ε k = Cεk
= C, tk ,η ε k−1(), rot, Kl+1,

⌢
Cl+1,Ml ,

⌢
Xl ,
⌢
Yl ,
⌢el ,
⌢sl
⌢σ l , (4.28)

where the identifier C is uniquely bound to the key-pair C 0, c0() , with public key, C 0 , which is
41/80

controlled by the private key, c0 , tk = k is the unique monotonically increasing sequence

number for this event , η ε k−1() is the digest of the preceding, k −1()th , event, rot is the event
ilk representing a rotation event, Kl+1 , is the threshold number of required signatures out of Ll+1
signers after the ensuing rotation,

⌢
Cl+1 = Crl+1 ,…,Crl+1+Ll+1−1⎡⎣ ⎤⎦l+1 is the list of ensuing public keys

that form a set of Ll+1 potential signers for the ensuing rotation to a multi-signature, rl+1 is the

starting index of the subsequence of controlling key-pairs for the l +1()th rotation (see Section
2.9), the l th tally, Ml , is the number of witnesses sufficient for events to be deemed valid by a

judge (validator), the l th exclude (omit) witness list
⌢
Xl = X0,… , XOl−1

⎡⎣ ⎤⎦l contains a list of the

identifiers (public keys) of Ol designated witnesses that are to be removed from the list of

witnesses, the l th include (append) witness list
⌢
Yl = Y0,… ,YPl−1⎡⎣ ⎤⎦l contains a list of the identifiers

(public keys) of Pl designated witnesses that are to be added to the list of witnesses,
⌢el = e0,…, eEl−1⎡⎣ ⎤⎦l is a list of length El of integer indices into the list, Crl−1 ,…,Crl−1+Ll−1−1⎡⎣ ⎤⎦ , of

ersters (erstwhile signers) as indicated by an earlier rotation event, rl−1 is the starting index of the

subsequence of controlling key-pairs for the l −1()th rotation (see Section 2.9),
⌢sl = s0,…, sSl−1⎡⎣ ⎤⎦l is a list of length Sl of integer indices into the list, Crl ,…,Crl+Ll−1⎡⎣ ⎤⎦ , of

signers for this the l th rotation event but as declared in the l −1()th rotation event, rl is the
starting index of the subsequence of controlling key-pairs for the l th rotation (see Section 2.9),
and ⌢σ l is the set of digital signatures that sign the contents of the brackets, . The inclusion of
the ersters signatures chains the signing authority of successive rotation events which provides
additional protection against forgery of key event rotation operations in a key event history as
two sets of keys must be exploited not only one. The number of signatures in the set ⌢σ l is equal
to the sum of the lengths of the ersters and signers lists, that is, El + Sl . Each element of the
ersters and signers lists produce one signature. The appropriate index into the sequence of
controlling key-pairs is computed from the offset given by each element of associated ersters
and signers lists added to the starting index of the respective subsequence of key-pairs. This may
be denoted as follows:

⌢σ l =σ Ce0+rl−1…σ
CeEl−1+rl−1

σ
Cs0+rl…σ

CsSl−1+rl
. (4.29)

In this derivation, the key-pair C j , c j() is the j th key-pair in a pre-rotated sequence of key-pairs
controlled by C. Each rotation indexed by l consumes one or more of these key-pairs.
Furthermore, the list of zero based integer indices of ersters ⌢el = e0,…, eEl−1⎡⎣ ⎤⎦l is of length El

and satisfies Kl−1 ≤ El ≤ Ll−1 . Each index refers to a key-pair from the ordered list of public keys
Crl−1 ,…,Crl−1+Ll−1−1⎡⎣ ⎤⎦ taken as a subsequence of the set of all C j , c j() . The indices may be used to

generate a list of signing ersters with the notation Ce0+rl−1 ,…,CeEl−1+rl−1⎡⎣ ⎤⎦ (see Section 2.9). From

this list the associated El signatures σ
Ce0+rl−1…σ

CeEl−1+rl−1
 are produced. Likewise, the list of zero

based integer indices of signers ⌢sl = s0,…, sSl−1⎡⎣ ⎤⎦l is of length Sl and satisfies Kl ≤ Sl ≤ Ll . Each

index refers to a key-pair from the list of public keys Crl ,…,Crl+Ll−1⎡⎣ ⎤⎦ taken as a subsequence of
42/80

the set of all C j , c j() . The indices may be used to generate a list of signing signers with the

notation Cs0+rl ,…,CsSl−1+rl⎡⎣ ⎤⎦ (see Section 2.9). From this list the associated Sl signatures are

produceσ
Cs0+rl…σ

CsSl−1+rl
d. Together there are El + Sl signatures attached to the event. The

combination comprises ⌢σ l defined in eq. 3.18.

This rotation event declares that the previously declared set of key-pairs in the subsequence
Crl ,…,Crl+Ll−1⎡⎣ ⎤⎦ as the new controlling set that replaces the set of key-pairs in the subsequence

Crl−1 ,…,Crl−1+Ll−1−1⎡⎣ ⎤⎦ . Furthermore this rotation event declares that the set of key-pairs in the sub-

sequence
⌢
Cl+1 = Crl+1 ,…,Crl+1+Ll+1−1⎡⎣ ⎤⎦l+1 will be the ensuing (pre-rotated) set.

As a clarifying example, let the sequence of inception event plus 3 rotation be as follows:

ε0 = C, t0,icp,C
0, 2, C1,C 2,C 3⎡⎣ ⎤⎦, 2, W0,W1,W2[] σ C0

ε1 = C, t1,η ε0(), rot, 2, C 4 ,C 5,C 6⎡⎣ ⎤⎦, 2, X0[]1 , Y0[]1 , 0[]1 , 0, 2[]1 σ
C0
σ

C1
σ

C3

ε2 = C, t2,η ε1(), rot, 3, C 7,C 8,C 9,C10⎡⎣ ⎤⎦, 3, []2 , Y0[]2 , 1, 2[]2 , 0,1[]2 σ
C2
σ

C3
σ

C4
σ

C5

ε3 = C, t3,η ε2(), rot, 2, C11,C12,C13⎡⎣ ⎤⎦, 3, X0[]3 , Y0[]3 , 0,1, 2[]3 , 1, 2, 3[]3
⌢σ 3

.(4.30)

where ⌢σ 3 =σ C4
σ

C5
σ

C6
σ

C8
σ

C9
σ

C10
.

The inception event, ε0 , always implies that K0 = 1 , L0 = 1 , and r0 = 0 . From this we can
compute r1 = 1 . The inception event also declares that K1 = 2 and by the given length of the
ensuers list that L1 = 3 . From this we can compute r2 = 4 . These declarations mean that the
ensuing multi-signature scheme will be 2 of 3. The witness tally is 2 out of the 3 provided
witness public keys, W0,W1,W2[] . The signature is σ

C0
.

The first rotation event, ε1 , declares that K2 = 2 and by the given length of the ensuers list that
L2 = 3 . From this we can compute r3 = 7 . The tally is still 2. There is one pruned witness
whose public key is X0 and one grafted witness whose public key is Y0 leaving a total of 3 wit-
nesses. The ersters list in this first rotation event is of length E1 = 1 . Because K0 = 1 and L0 = 1 ,
it may have only one entry. From its entry, e0 = 0[]1 we may compute the index

j = e0 + r0 = 0 + 0 = 0 of the associated key-pair. This gives the derived list of ersters as C 0⎡⎣ ⎤⎦ .
This corresponds to the original key-pair for the identifier. The signers list in this rotation must
have at least K1 = 2 but may have up to L1 = 3 entries. In this case it has S1 = 2 entries,
s0 = 0, s1 = 2[]1 . From these entries we may compute the indices of the signing key-pairs. These

indices are j = s0 + r1 = 0 +1= 1 and j = s1 + r1 = 2 +1= 3 . This gives the derived list of signers
as C1,C 3⎡⎣ ⎤⎦ . The associated signatures are σ

C0
σ

C1
σ

C3
.

The second rotation event, ε2 , declares that K3 = 3 and by the given length of the ensuers list
that L3 = 4 . From this we can compute r4 = 11. The tally is increased to 3 with one additional
grafted witness whose public key is Y0 leaving a total of 4 witnesses. The ersters list in this rota-
tion must have at least K1 = 2 but may have up to L1 = 3 entries. In this case it has 2 entries.
From its entries, e0 = 1, e1 = 2[]2 and r1 = 1 we may derive the list of ersters as C 2,C 3⎡⎣ ⎤⎦ . The

43/80

signers list in this rotation must have at least K2 = 2 but may have up to L2 = 3 entries. In this
case is has 2 entries. From its entries s0 = 0, s1 = 1[]2 and r2 = 4 . we may derive the list of sign-

ers as C 4 ,C 5⎡⎣ ⎤⎦ . The associated signatures are σ
C2
σ

C3
σ

C4
σ

C5
.

The third rotation event, ε3 , declares that K4 = 2 and by the given length of the ensuers list
that L4 = 3 . From this we can compute r5 = 14 . The tally is still 3. There is one pruned witness
whose public key is X0 and one grafted witness whose public key is Y0 leaving a total of 4 wit-
nesses. The ersters list in this rotation must have at least K2 = 2 but may have up to L2 = 3 en-
tries. In this case it has 3 entries. From its entries, e0 = 0, e1 = 1, e1 = 2[]3 and r2 = 4 we may de-

rive the list of ersters as C 4 ,C 5,C 6⎡⎣ ⎤⎦ . The signers list in this rotation must have at least K3 = 3
but may have up to L3 = 4 entries. In this case is has 3 entries. From its entries
s0 = 1, s1 = 2, s1 = 3[]3 and r3 = 7 . we may derive the list of signers as C 8,C 9,C10⎡⎣ ⎤⎦ . The asso-

ciated signatures are σ
C4
σ

C5
σ

C6
σ

C8
σ

C9
σ

C10
.

A tuple of the field labels may be denoted as follows:
id, sn, digest, ilk, threshold, ensuers, tally, prune, graft, ersters, signers() (4.31)

These labels may be used as the field names in a JSON serialized version of the key rotation
event message, ε1 , as follows:
{
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 1,
 "digest": "GEj6YfRWmGViKAesa08UkNWukUkPGsdFPPboBAsjRBw=",
 "ilk": "rot",
 "threshold": 2,
 "ensuers":
 [
 "WoNZsa88VrTkep6HQt27fTh-4HA8tr54sHON1vWl6FE=",
 "8tr54sHON1vWVrTkep6H-4HAl6FEQt27fThWoNZsa88=",
 "VrTkep6HHA8tr54sHON1Qt27fThWoNZsa88-4vWl6FE="
],
 "tally": 2,
 "prune":
 [
 "VrTkep6H-Qt27fThWoNZsa884HA8tr54sHON1vWl6FE=",
],
 "graft":
 [
 "HA8tr54sHON1vWl6FEVrTkep6H-Qt27fThWoNZsa884=",
],
 "ersters": [0],
 "signers": [0,2]
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="
\r\n\r\n

44/80

"KFFgf8i0tDq8XGizaCgAeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQ
oYKBYrPPxAoIc1i5SHCIDS8=="
\r\n\r\n
"Hot0pmdWAcgTo5sKFFgf8i0tDq8XGizaCgAeYbsD8iAuSQAfnH5U6wiIGpVNJQQ
oYKBYrPPxAoIc1i5SHCIDS8=="

4.3.4 Chained Rotation Event Receipt
A witness, Wi (or validator), may create an inception event receipt by signing with its associat-

ed key-pair. Its signature of the l th rotation event operation occurring as the kth event in the se-
quence may be denoted as follows:

.σWi
Cεk() =σWi

C, tk ,η ε k−1(), rot, Kl+1,
⌢
Cl+1,Ml ,

⌢
Xl ,
⌢
Yl ,
⌢el ,
⌢sl
⌢σ l() (4.32)

The associated event receipt may then be denoted using compact notation as follows:

ρWi
Cεk() = Cεk

σWi
= C, tk ,η ε k−1(), rot, Kl+1,

⌢
Cl+1,Ml ,

⌢
Xl ,
⌢
Yl ,
⌢el ,
⌢sl
⌢σ l σWi

. (4.33)

All events share the same key event receipt message format. This is described in Section 5.3.

4.3.5 Unchained Rotation Event
The rotation event format enables changes to both the threshold and number of signatories

with each rotation. When unchained the order of events is provided solely by the sequence num-
ber. In this case, the l th multi-signature key rotation event event operation occurring as the
kth event in the sequence for a controller labeled C that is provided via a serialized key rotation
event message labeled, Cεk

, may be denoted as follows:

ε k = Cεk
= C, tk , rot, Kl+1, C

rl+1 ,…,Crl+1+Ll+1−1⎡⎣ ⎤⎦,Ml ,
⌢
Xl ,
⌢
Yl ,
⌢el ,
⌢sl
⌢σ (4.34)

where the field definition are the same as provided in the definition of eq. 4.28. The associated
rotation event receipt and message are modified appropriately with the content above.

5 OTHER EVENTS AND MESSAGES

5.1 Generic Interaction Event
One purpose establishing signing keys for an identifier is to sign attestations by the controller

associated with that identifier for purposes other than key management, such as transactions or
other interactions. In this case, of interaction (non-key management) a non-rotation event is ap-
plicable. Because interactions are varied, instead of defining a specific event ilk for every inter-
action type, a generic interaction event is defined where the interaction specific details are en-
capsulated in the event payload. To clarify, an interaction event is an event associated with an
interaction between a controller and validator that is not a key management event such as key ro-
tation. The payload of the generic interaction event includes a data structure that provides the de-
tails of the specific interaction. The data payload is what is being attested to. The generic inter-
action event message is serialized version of the event and includes an attached signature by the
controller. The attached signature is made with the private key from the current signing key-
pair(s) as specified by the most recent rotation event in the rotation history.

45/80

5.1.1 Single Signature Chained
The chained generic interaction event occurring as the kth event in the sequence for a con-

troller labeled C and signed with signing key-pair specified by the l th rotation event may be de-
noted as follows:

ε k = Cεk
= C, tk ,η ε k−1(),itc, data{ } σ

Cl (5.1)

where the identifier C is uniquely bound to the key-pair C 0, c0() , with public key, C 0 , which is

controlled by the private key, c0 , tk = k is the unique monotonically increasing sequence

number for this event , η ε k−1() is the digest of the preceding event k −1()th , itc is the event
ilk representing a generic interaction event, data{ } is the payload data structure for the event,

and the digital signature σ
Cl made with private key cl from key-pair, Cl , cl() , signs the

contents of the brackets . The key-pair Cl , cl() is the l th key-pair in the pre-rotated sequence
of keys controlled by C.

For example when l = 2 and k = 4 the interaction event may be denoted as follows:

ε4 = Cε4
= C, t4 ,η ε3(),itc, data{ } σ

C2
(5.2)

A tuple of the labels for the fields in the event may be denoted as follows:
id, sn, digest, ilk, data() (5.3)

These labels may be used as the field names in a JSON serialized version of the generic interac-
tion event message which may be expressed as follows:

{
 "cid": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 4,
 "digest": "GEj6YfRWmGViKAesa08UkNWukUkPGsdFPPboBAsjRBw=",
 "ilk": "itc",
 "data":
 {
 "first":"John",
 "last":"Smith"
 },
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="

5.1.2 Single Signature Unchained
The non-backward-chained generic interaction event signed with l th rotation event specified

signing key-pair occurring as the kth event in the sequence may be denoted as follows:
ε k = Cεk

= C, tk ,itc, data{ } σ
Cl (5.4)

where the field definitions are the same as in the chained version above (see eq. 5.1).

46/80

5.1.3 Multiple Signature Chained
The chained generic interaction event occurring as the kth event in the sequence for a con-

troller labeled C and signed with thresholded multi-signatures specified by the l th rotation event
may be denoted as follows:

ε k = Cεk
= C, tk ,η ε k−1(),itc, data{ }, ⌢sk

⌢σ k (5.5)

where the identifier C is uniquely bound to the key-pair C 0, c0() , with public key, C 0 , which is

controlled by the private key, c0 , tk = k is the unique monotonically increasing sequence

number for this event , η ε k−1() is the digest of the preceding event k −1()th , itc is the event
ilk representing a generic interaction event, data{ } is the payload data structure for the event,

and ⌢sk = s0,…, sSk−1⎡⎣ ⎤⎦k is a list of length Sl of integer indices into the list, Crl ,…,Crl+Ll−1⎡⎣ ⎤⎦ , of

controlling key-pair signers declared in the l −1()th rotation event and activated in the l th
rotation, rl is the starting index of the subsequence of controlling key-pairs for the l th rotation
(see Section 2.9), and ⌢σ k is the set of digital signatures that sign the contents of the brackets,

. The number of signatures in the set ⌢σ k is equal to the length, Sk , of the signers list. Each
element of the signers list produces one signature. The appropriate index into the sequence of
controlling key-pairs is computed from the offset given by each element of associated signers
list added to the starting index of the respective subsequence of key-pairs. This may be denoted
as follows:

⌢σ k =σ Cs0+rl…σ
CsSk−1+rl

. (5.6)

In this derivation, the key-pair C j , c j() is the j th key-pair in a pre-rotated sequence of key-pairs
controlled by C. Each rotation indexed by l consumes one or more of these key-pairs.
Furthermore, the list of zero based integer indices of signers ⌢sk = s0,…, sSk−1⎡⎣ ⎤⎦k is of length

Sk and satisfies Kl ≤ Sk ≤ Ll where Kl is the threshold and Ll is total number of of signers as
activated by the l th rotation. Each index refers to a key-pair from the list of public keys
Crl ,…,Crl+Ll−1⎡⎣ ⎤⎦ taken as a subsequence of the set of all C j , c j() . The indices may be used to

generate a list of signing signers with the notation (see Section 2.9). From this list the
associated Sl signatures ⌢σ k =σ Cs0+rl…σ

CsSk−1+rl
 are produced. There are Sk signatures attached to

the event. The combination comprises ⌢σ k defined in eq. 5.6.

For example consider the following set of events:

ε0 = C, t0,icp,C
0, 2, C1,C 2,C 3⎡⎣ ⎤⎦ σ

C0

ε1 = C, t1,η ε0(), rot, 2, C 4 ,C 5,C 6⎡⎣ ⎤⎦, 0[]1 , 0,1[]1 σ
C0
σ

C1
σ

C2

!

ε4 = Cε4
= C, t4 ,η ε3(),itc, data{ }, 0, 2[]4 σ

C1
σ

C3

. (5.7)

The inception event, ε0 , and subsequent rotation event, ε1 , l = 1 , declare that the current
signature scheme is 2 of 3 of the signer set C1,C 2,C 3⎡⎣ ⎤⎦ . Any non-rotation event must be signed
by at least 2 of the 3 signers. The interaction event, ε4 , k = 4 has two signers indexed by

47/80

0, 2[]4 . Given that rl = r1 = 1 the set of signers may be computed as C1,C 3⎡⎣ ⎤⎦ and the signatures
σ

C1
σ

C3
 are attached.

A tuple of the labels for the fields in the multi-signature generic interaction event may be
denoted as follows:

id, sn, digest, ilk, data, signers() (5.8)

These labels may be used as the field names in a JSON serialized version of the generic interac-
tion event message which may be expressed as follows:

{
 "cid": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 4,
 "digest": "GEj6YfRWmGViKAesa08UkNWukUkPGsdFPPboBAsjRBw=",
 "ilk": "itc",
 "data":
 {
 "first":"John",
 "last":"Smith"
 },
 "signers": [0,2]
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="
\r\n\r\n
"QQoYKBYrPPxAoIc1i5SHCAeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJ
IDS8KFFgf8i0tDq8XGizaCg=="

5.1.4 Multiple Signature Unchained
The unchained generic interaction event occurring as the kth event in the sequence for a con-

troller labeled C and signed with thresholded multi-signatures specified by the l th rotation event
may be denoted as follows:

ε k = Cεk
= C, tk ,itc, data{ }, ⌢sk

⌢σ k (5.9)

where the field definitions are the same as in the chained version above (see eq. 5.5).

5.2 Combined Interaction Rotation Event
The purpose of the generic interaction event described above is to enable interactions between

a controller and validator that are not expressly key management events such as key rotation.
These interaction events are signed with the current signing key. Often numerous interaction
events will occur between key rotations. Although this exposes the signing key, the pre-rotated
ensuing signing key is not exposed and may be used to recover via a rotation from exploit of the
signing key . This approach trades off security for convenience for applications where exposure
to exploit of an interaction event is an acceptable trade-off for the convenience of reusing
signing keys. In more critical interactions, however, that trade-off may not be acceptable. When
not acceptable then better protection may be warranted. One way to better protect an interaction
event is to combine it with a rotation event. In this case, the combined interaction and rotation

48/80

event only uses the signing keys once, i.e. effectively making the signing keys one-time usage
keys that rotate with each usage. Thus the the interaction signing keys are not exposed via re-
peated use.

Any of the rotation operation events may be extended to support combined interaction and ro-
tation (one time use signing) by adding a payload data structure, data{ } , to the rotation event.
This does not change the semantics of verification but merely enables the rotation to also be part
of an interaction or vice versa and protects and interaction with a simultaneous rotation. The
data{ } payload of the combined interaction-rotation event provides the details of the interaction.

The combined interaction-rotation event message is a serialized version of the event and in-
cludes attached signature(s) by the controller as appropriate for a rotation event. The various ex-
tended rotation event denotations are as follows:

Cεk
= C, tk ,η ε k−1(), rot,Cl+1, data{ } σ

Cl−1σ Cl

Cεk
= C, tk ,η ε k−1(), rot, Kl+1, C

rl+1 ,…,Crl+1+Ll+1−1⎡⎣ ⎤⎦, data{ }, ⌢el , ⌢sl
⌢σ l

Cεk
= C, tk ,η ε k−1(), rot,Cl+1,Ml ,

⌢
Xl ,
⌢
Yl , data{ } σ

Cl−1σ Cl

Cεk
= C, tk ,η ε k−1(), rot, Kl+1, C

rl+1 ,…,Crl+1+Ll+1−1⎡⎣ ⎤⎦,Ml ,
⌢
Xl ,
⌢
Yl , data{ }, ⌢el , ⌢sl

⌢σ

. (5.10)

As a clarifying example, the multi-signature witnessed rotation is extended below to include the
interaction data payload. a JSON serialized version of the combined interaction-rotation event
message follows:
{
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 1,
 "digest": "GEj6YfRWmGViKAesa08UkNWukUkPGsdFPPboBAsjRBw=",
 "ilk": "rot",
 "threshold": 2,
 "ensuers":
 [
 "WoNZsa88VrTkep6HQt27fTh-4HA8tr54sHON1vWl6FE=",
 "8tr54sHON1vWVrTkep6H-4HAl6FEQt27fThWoNZsa88=",
 "VrTkep6HHA8tr54sHON1Qt27fThWoNZsa88-4vWl6FE="
],
 "tally": 2,
 "prune":
 [
 "VrTkep6H-Qt27fThWoNZsa884HA8tr54sHON1vWl6FE=",
],
 "graft":
 [
 "HA8tr54sHON1vWl6FEVrTkep6H-Qt27fThWoNZsa884=",
],
 "data":
 {
 "first":"John",
 "last":"Smith"
 },
 "ersters": [0],

49/80

 "signers": [0,2]
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="
\r\n\r\n
"KFFgf8i0tDq8XGizaCgAeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQ
oYKBYrPPxAoIc1i5SHCIDS8=="
\r\n\r\n
"Hot0pmdWAcgTo5sKFFgf8i0tDq8XGizaCgAeYbsD8iAuSQAfnH5U6wiIGpVNJQQ
oYKBYrPPxAoIc1i5SHCIDS8=="

5.3 Event Receipt Message
The structure of the event receipt message is the same for any event. The only difference is

specifying who created the receipt. The two main cases are validator created and witness created
receipts.

5.3.1 Validator Event Receipt Message
A validator, V, may create an event receipt by signing with its associated key-pair. Its signature

of the key event may be denoted as follows:

σV Cεk() . (5.11)

where the specific event details are dependent on the event itself.
Because the controller has a copy of the event message, a compact receipt message created by

the validator need not include a copy of the event message but might include only the identifier
of the controller, the event sequence number, the identifier of the validator and the signature of
the validator. This compact event receipt message may be denoted as follows:

C, tk , rct,V ,σV Cεk() = C, tk , rct,V ,σV (5.12)

where C is the identifier of the controller, tk is the unique sequence number of the key event,
rct is the event ilk representing an event receipt, V is the identifier of the validator bound to
key-pair V 0, v0() , and σV Cεk() is the signature of the validator on the key event message

labeled Cεk
.

When k = 1 this event receipt message may be simply expressed in a JSON serialized version as
follows:

{
 "cid": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 1,
 "ilk": "rct",
 "vid": "3syVH2woCpOvPF0SD9Z0bu_OxNe2ZgxKjTQ961LlMnA=",
 "sig":
"KFFgf8i0tDq8XGizaCgAeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQ
oYKBYrPPxAoIc1i5SHCIDS8==",
}

50/80

5.3.2 Witness Event Receipt Messages
A witness, Wi , may create an event receipt by signing with its associated key-pair. Its signature

of the event may be denoted as follows:

σWi
Cεk() , (5.13)

where the specific event details are dependent on the event itself.
Because the controller has a copy of the event message, a compact receipt message created by

the witness need not include a copy of the event message but may only include the identifier of
the controller, the event sequence number, the event ilk of rct, the identifier of the witness and
the signature of the witness. This compact event receipt message may be denoted as follows:

C, tk , rct,Wi ,σWi
Cεk() = C, tk , rct,Wi ,σWi

(5.14)

where C is the identifier of the controller, t0 is the unique sequence number of the event, rct is
the event ilk representing an event receipt, Wi is the identifier of the witness bound to key-pair

Wi
0, wi

0() , and σWi
Cε0() is the signature of the witness on the key event message labeled Cε0

.

When k = 1 this event receipt message may be simply expressed in a JSON serialized version as
follows:

{
 "cid": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 1,
 "ilk": "rct",
 "wid": "3syVH2woCpOvPF0SD9Z0bu_OxNe2ZgxKjTQ961LlMnA=",
 "sig":
"KFFgf8i0tDq8XGizaCgAeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQ
oYKBYrPPxAoIc1i5SHCIDS8==",
}

6 EXAMPLE SEQUENCES

These examples illustrate the sequencing of key management events interspersed with generic
interaction events and how that affects the indices of the pre-rotated key-pairs. In general the
best practice is to immediately follow the inception event with a rotation. This means that the
original controlling key pair will have the least possible exposure because it is only used to sign
the inception event and first rotation. This makes it difficult for any exploiter to forge an al-
ternate key event history starting at the inception. Rotation events require signatures of the cur-
rent and previous signing keys. This mean an exploit of two successive keys is required after the
inception event.

6.1 Online Protocol Without Witnesses
6.1.1 Single Signature Chained

51/80

ε0 = C, t0,icp,C
0,C1 σ

C0

ε1 = C, t1,η ε0(), rot,C 2 σ
C0
σ

C1

ε2 = C, t2 η ε1(),itc, data σ
C1

ε3 = C, t3,η ε2(), rot,C 3 σ
C1
σ

C2

ε4 = C, t4 ,η ε3(),itc, data σ
C2

ε5 = C, t5,η ε4(),itc, data σ
C2

. (6.1)

6.1.2 Multiple Signature Chained

ε0 = C, t0,icp,C
0, 2, C1,C 2,C 3⎡⎣ ⎤⎦ σ

C0

ε1 = C, t1,η ε0(), rot, 2, C 4 ,C 5,C 6⎡⎣ ⎤⎦, 0[], 0, 2[] σ C0
σ

C1
σ

C3

ε2 = C, t2,η ε1(),itc, data, 0, 2[]1 σ
C1
σ

C3

ε3 = C, t3,η ε2(), rot, 2, C 7,C 8,C 9⎡⎣ ⎤⎦, 1, 2[], 0, 1[] σ C2
σ

C3
σ

C4
σ

C5

ε4 = C, t4 ,η ε3(),itc, data, 0, 2[]4 σ
C4
σ

C6

ε5 = C, t5,η ε4(),itc, data, 1, 2[]4 σ
C5
σ

C6

. (6.2)

6.2 Offline Protocol With Witnesses
6.2.1 Single Signature Chained

ε0 = C, t0,icp,C
0,C1, 2, W0,W1,W2[] σ C0

ε1 = C, t1,η ε0(), rot,C 2, 2, X0[]1 , Y0[]1 σ
C0
σ

C1

ε2 = C, t2 η ε1(),itc, data σ
C1

ε3 = C, t3,η ε2(), rot,C 3, 3, []2 , Y0[]2 σ
C1
σ

C2

ε4 = C, t4 ,η ε3(),itc, data σ
C2

ε5 = C, t5,η ε4(),itc, data σ
C2

. (6.3)

52/80

6.2.2 Multiple Signature Chained

ε0 = C, t0,icp,C
0, 2, C1,C 2,C 3⎡⎣ ⎤⎦, 2, W0,W1,W2[] σ C0

ε1 = C, t1,η ε0(), rot, 2, C 4 ,C 5,C 6⎡⎣ ⎤⎦, 2, X0[]1 , Y0[]1 , 0[]1 , 0, 2[]1 σ
C0
σ

C1
σ

C3

ε2 = C, t2,η ε1(),itc, data, 0, 2[]1 σ
C1
σ

C3

ε3 = C, t3,η ε2(), rot, 2, C 7,C 8,C 9⎡⎣ ⎤⎦, 3, []2 , Y0[]2 , 1, 2[]2 , 0,1[]2 σ
C2
σ

C3
σ

C4
σ

C5

ε4 = C, t4 ,η ε3(),itc, data, 0, 2[]4 σ
C4
σ

C6

ε5 = C, t5,η ε4(),itc, data, 1, 2[]4 σ
C5
σ

C6

. (6.4)

7 DELEGATION

In some applications, one important interaction for a controller may be to delegate its signing
authority. One approach is to delegate the controller’s authority to another identifier (authorized
delegation). In this way, delegation may authorize some other identifier and its associated con-
trolling keys as authoritative for the delegating controller. Likewise other delegative interactions
may be possible. When the delegation interaction is a combined rotation-interaction event it pro-
vides protection to the delegation because the controller keys are only used once. Given the im-
portance of some delegation operations this may be the preferred approach. A common use case
would be to delegate authority to a sequence of signing keys distinct from the keys used for the
controller’s identifier through delegated inception and rotation events. This is a type of hierar-
chical key management. This approach may be applied recursively to enable multiple levels of
delegation thereby creating a chained graph of key event streams. With this approach any num-
ber of layers or levels of management keys may be supported via composition of delegation
events. Moreover, in addition to inception and rotation, delegation may be used to manage other
types of authorizations.

Delegated authorizations are of primary importance for a general DKMI. The KERI design ap-
proach is to build composable primitives instead of custom functionality that is so typical of oth-
er DKMI approaches. We believe that the simpler but composable design of the KERI core is the
most appropriate primitive. Consequently when applied recursively, delegation may be used to
compose arbitrarily complex graphs of hierarchical (delegative) key management event streams.
This is a most powerful capability that may provide essential building blocks for a generic uni-
versal DKMI that is compatible with the demands of event streaming applications.

7.1 Delegated Signing
The section defines delegative inception and rotation operations for managing a different set of

signing keys. This is the simple case where only one level of delegation is supported (not recur-
sive). A recursive delegation definition is beyond the scope of this work. Herein the controlling
keys are merely used to manage (incept and rotate) other identified key event streams that pro-
vide signing keys. In order to limit exposure, the controlling keys may not be repurposed as
signing keys. To clarify, in this approach, a master controller (identifier) key event stream may
delegate signing authority to one or more slave identifier key event streams thereby forming a
chained tree of key event streams. The associated delegative version of the KERI core state veri-
fication engine must also lookup and verify the delegator’s key event log in order to confirm the
delegator’s control authority. In this sense, the delegate’s event stream is linked to the delega-
tor’s event stream. A digest of the delegator’s delegating event may be included in the delegate’s
inception/rotation event to chain the two streams together. Multiple delegates from the same del-

53/80

egator would form a tree. The following diagram shows a delegating (master) identifier with its
associated sequence of controlling events and several delegate (slave) identifier with their se-
quence of controlled events.

A Rotation
∆→ X Inception

A Inception

A Rotation

A Rotation
∆→ Y Inception

A Rotation
∆→ Z Inception

A Rotation
∆→ X Rotation

A Rotation
∆→ Y Rotation

A Rotation
∆→ Z Rotation

A Rotation
∆→ Y Rotation

A Rotation
∆→ Z Rotation

A Rotation
∆→ X Rotation

X ∆← A Inception

X Interaction Y ∆← A Inception

Y Interaction
Z Interaction

X Interaction

X ∆← A Rotation

Y Interaction

Y Interaction

Y ∆← A Rotation

Z ∆← A Inception
X Interaction

X Interaction

X Interaction Y Interaction

Y Interaction

Y ∆← A Rotation

Y Interaction

Y Interaction

X ∆← A Rotation

X Interaction

X Interaction

X ∆← A Rotation

X Interaction

X Interaction

Z Interaction

Z ∆← A Rotation

Z Interaction

Z Interaction

Z Interaction

Z ∆← A Rotation

Z Interaction

Z Interaction

A
Key Event Stream

X
Key Event Stream

Y
Key Event Stream

Z
Key Event Stream

Delegator Delegate Delegate Delegate

∆→ X : Delegation to X
∆← A : Delegation from A

Figure 7.1. KERI Multiple Delegated Signing Key Event Streams

One advantage of this approach is that each delegated key event stream is a dedicated chain of
events with a dedicated sequence numbering set and dedicated digest chain instead of an in-
terleaved sequence number and digest chain. This makes it easier to manage each stream inde-
pendently of the others. This makes it more scalable as well and easier to adapt to different key
support infrastructures for each delegated signing key event stream. The delegating controller
has one key-pair sequence this is represented by the associated public keys as follows:

C j
j=0,1,… , (7.1)

such as C 0,C1,C 2,… .

Each controlled delegate also has a key-pair sequence that is represented by the associated
public keys as follows:

D j
j=0,1,… , (7.2)

such as D0, D1, D2,… . Without loss of generality the event messages for a pair of delegator and
delegate may be extended to any number of delegates for the same delegator.

54/80

7.2 Delegated Inception Event
A delegated event stream is created by a delegated inception message that may be denoted as

follows:

ε0 = Dε0
= D, t0, dip,

⌢
Δk
C , D0, perms, K0

D ,
⌢
D0

D ,M 0
D ,
⌢
W0

D σ
D0

, (7.3)

where the identifier D is uniquely bound to the key-pair D0, d 0() , with public key, D0 , which is

controlled by the private key, d 0 , t0 is the unique monotonically increasing sequence number
for this event , dip is the event ilk representing a delegated inception event,
⌢
Δk
C = C, tk

C ,η ε k
C(){ } is the delegation structure from the delegator, within this delegation

structure, C is the identifier of the controlling delegator and controlled by key pair C 0, c0() , tk
C

is the unique monotonically increasing sequence number of the delegating event in its event
sequence and η ε k

C() is the digest of the delegating event, D0 is the originating public key of the
delegate, perms is a field that when not empty may hold a data structure of specific permissions
for the delegation but when empty indicates the default permissions, K0

D , is the threshold

number of required signatures out of L0
D signers,

⌢
D0

D = D1,…, DL0
D⎡⎣ ⎤⎦0 is the list of signing

public keys that form a set of L0
D signers for any subsequent interaction events, indeed these

represent the authorized delegated signing key pairs, the tally, M 0
D is the number of witnesses

sufficient for the event to be deemed valid by a judge (validator), the witness list contains
⌢
W0

D = W0
D ,… ,W

ND−1
D⎡

⎣
⎤
⎦0

a list of the identifiers (public keys) of N0
D designated witnesses, and

σ
D0

is the digital signature of the contents of the brackets, , made with private key d 0 . The
signature σ

D0
demonstrates control over the identifier D . This prevents malicious entities from

forging delegated inception events for an identifier not under their control. Verification of the
delegation is performed by verifying the delegating event message from the controlling
delegator’s event stream.

An example JSON serialized version of the delegated inception event as follows:

{
 "id": "UhL0JRaU2_RxFP0AL4Xq5YqaL6L48pf0fu7I3wYn148=",
 "sn": 0,
 "ilk": "dip",
 "delegator":
 {
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": "2",
 "digest": "GViKAesa08UkNWukGEj6YfRWmUkPGsdFPPboBAsjRBw=",
 },
 "signer": "UhL0JRaU2_RxFP0AL4Xq5YqaL6L48pf0fu7I3wYn148=",
 "perms": {},
 "threshold": 2,
 "signers":
 [
 "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",

55/80

 "VrTkep6H-4HA8tr54sHON1vWl6FEQt27fThWoNZsa88=",
 "HA8tr54sHON1Qt27fThWoNZsa88VrTkep6H-4vWl6FE="
],
 "tally": 2,
 "witnesses":
 [
 "VrTkep6H-Qt27fThWoNZsa884HA8tr54sHON1vWl6FE=",
 "HON1vWl6FEQt27fThWoNZsa88VrTkep6H-4HA8tr54s=",
 "ThWoNZsa88VrTkeQt27fp6H-4HA8tr54sHON1vWl6FE=",
]
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="

7.3 Rotation Event Delegating Inception
A delegated event inception is verified against a rotation message with the associated delega-

tion structure in the delegator’s event stream. The rotation message that authorizes a delegated
inception may be denoted as follows:

ε k = C, tk ,η ε k−1(), rot, Kl+1,
⌢
Cl+1,Ml ,

⌢
Xl ,
⌢
Yl ,
⌢
Δ0
D , ⌢el ,

⌢sl
⌢σ l , (7.4)

where
⌢
Δ0
D = D, dip, D0, perms, K0

D ,
⌢
D0

D ,M 0
D ,
⌢
W0

D{ } (7.5)

is the delegation structure and the other fields are as defined in eq. 4.28 eq. 5.10, and eq. 9.8.
The main difference is the data{ } field has been set to the delegation structure

⌢
Δ0
D , i.e.

data{ } =
⌢
Δ0
D . The contents of the delegation structure are as follows: D is the unique identifier

of the delegate controlled by key-pair D0, d 0() , dip is the value of the delegated event ilk, D0
is the associated public key, perms is a data structure that when not empty provides specific
permission to the delegate and when empty indicates default permissions, K0

D is the threshold

number of a total of L0
D authorized delegated signing key-pairs,

⌢
D0

D = D1,…, DL0
D⎡⎣ ⎤⎦0 is a list of

the public keys for the L0
D associated delegated signing key-pairs, M 0

D is the tally of number of

N0
D delegated witnesses required for validation, and

⌢
W0

D = W0
D ,… ,W

ND−1
D⎡

⎣
⎤
⎦0

 is the list of

delegated witnesses. The contents of the delegation structure are used to create the delegated
inception event (see 7.1.2). The signatures, ⌢σ l =σ Ce0+rl−1…σ

CeEl−1+rl−1
σ

Cs0+rl…σ
CsSl−1+rl

, attached to
this rotation event authorize the delegation.

An example JSON serialized version of the rotation event message delegating inception
follows:
{
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 2,
 "digest": "GEj6YfRWmGViKAesa08UkNWukUkPGsdFPPboBAsjRBw=",
 "ilk": "rot",

56/80

 "threshold": 2,
 "ensuers":
 [
 "WoNZsa88VrTkep6HQt27fTh-4HA8tr54sHON1vWl6FE=",
 "8tr54sHON1vWVrTkep6H-4HAl6FEQt27fThWoNZsa88=",
 "VrTkep6HHA8tr54sHON1Qt27fThWoNZsa88-4vWl6FE="
],
 "tally": 2,
 "prune":
 [
 "VrTkep6H-Qt27fThWoNZsa884HA8tr54sHON1vWl6FE=",
],
 "graft":
 [
 "HA8tr54sHON1vWl6FEVrTkep6H-Qt27fThWoNZsa884=",
],
 "delegate":
 {
 "id": "UhL0JRaU2_RxFP0AL4Xq5YqaL6L48pf0fu7I3wYn148=",
 "ilk": "dip",
 "signer": "UhL0JRaU2_RxFP0AL4Xq5YqaL6L48pf0fu7I3wYn148=",
 "perms": {},
 "threshold": 2,
 "signers":
 [
 "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
 "VrTkep6H-4HA8tr54sHON1vWl6FEQt27fThWoNZsa88=",
 "HA8tr54sHON1Qt27fThWoNZsa88VrTkep6H-4vWl6FE="
],
 "tally": 2,
 "witnesses":
 [
 "VrTkep6H-Qt27fThWoNZsa884HA8tr54sHON1vWl6FE=",
 "HON1vWl6FEQt27fThWoNZsa88VrTkep6H-4HA8tr54s=",
 "ThWoNZsa88VrTkeQt27fp6H-4HA8tr54sHON1vWl6FE=",
],
 },
 "ersters": [0],
 "signers": [0,2]
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="
\r\n\r\n
"KFFgf8i0tDq8XGizaCgAeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQ
oYKBYrPPxAoIc1i5SHCIDS8=="
\r\n\r\n
"Hot0pmdWAcgTo5sKFFgf8i0tDq8XGizaCgAeYbsD8iAuSQAfnH5U6wiIGpVNJQQ
oYKBYrPPxAoIc1i5SHCIDS8=="

57/80

7.4 Delegated Rotation Event
The signing keys in a delegated event stream are rotated by a delegated rotation message. The

the eth delegated rotation operation that occurs as the dth event may be denoted as follows:

εd = Dεd
= D, td ,η εd−1(), drt, ⌢Δk

C , perms, Ke
D ,
⌢
De

D ,Me
D ,
⌢
Xe

D ,
⌢
Ye

D σ
D0

, (7.6)

where the identifier D is uniquely bound to the key-pair D0, d 0() , with public key, D0 , which is

controlled by the private key, d 0 , td is the unique monotonically increasing sequence number
for this the dth event, η εd−1() is the digest of the previous event in the delegates event

sequence, drt is the event ilk representing a delegated rotation event,
⌢
Δk
C = C, tk

C ,η ε k
C(){ } is

the delegation structure from the delegator, within this delegation structure, C is the identifier of
the controlling delegator as controlled by key pair C 0, c0() , tk

C is the unique monotonically

increasing sequence number of the delegating event in its event sequence and η ε k
C() is the

digest of the delegating event, perms is a field that when not empty may hold a data structure of
specific permissions for the delegation but when empty indicates the default permissions, Ke

D , is
the threshold number of required signatures out of Le

D signers for this the eth rotation,
⌢
De

D = Dre
D

,…, Dre
D+Le

D−1⎡⎣ ⎤⎦e is the list of signing public keys for this the eth rotation that form a set

of Le
D signers for any subsequent interaction events, indeed these represent the authorized

delegated signing key pairs, the tally, Me
D is the number of witnesses sufficient out of a total

Ne
D for events to be deemed valid by a judge (validator), the eth exclude (omit) witness list
⌢
Xe

D = X0
D ,… , X

Oe
D−1
D⎡

⎣
⎤
⎦e

 contains a list of the identifiers (public keys) of Oe
D designated witnesses

that are to be removed from the list of witnesses, the eth include (append) witness list
⌢
Ye

D = Y0,… ,YPeD−1
⎡
⎣

⎤
⎦e

 contains a list of the identifiers (public keys) of Pe
D designated witnesses

that are to be added to the list of witnesses, and σ
D0

is the digital signature of the contents of the

brackets, , made with private key d 0 . The signature σ
D0

demonstrates control over the
identifier D . This prevents malicious entities from forging delegated rotation events for an
identifier not under their control. Verification of the delegation is performed by verifying the
delegating event message from the controlling delegator’s event stream.

An example JSON serialized version of the delegated rotation event message, follows:
{
 "id": "UhL0JRaU2_RxFP0AL4Xq5YqaL6L48pf0fu7I3wYn148=",
 "sn": 1,
 "digest": "PGsdFPPboGEj6YfRWmGViKAesa08UkNWukUkBAsjRBw=",
 "ilk": "drt",
 "delegator":
 {
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": "4",
 "digest": "8UkNWukUkPGsdFPPboBAsjRBwGEj6YfRWmGViKAesa0=",

58/80

 },
 "perms": {},
 "threshold": 2,
 "signers":
 [
 "WoNZsa88VrTkep6HQt27fTh-4HA8tr54sHON1vWl6FE=",
 "8tr54sHON1vWVrTkep6H-4HAl6FEQt27fThWoNZsa88=",
 "VrTkep6HHA8tr54sHON1Qt27fThWoNZsa88-4vWl6FE="
],
 "tally": 2,
 "prune":
 [
 "VrTkep6H-Qt27fThWoNZsa884HA8tr54sHON1vWl6FE=",
],
 "graft":
 [
 "HA8tr54sHON1vWl6FEVrTkep6H-Qt27fThWoNZsa884=",
]
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="

7.5 Rotation Event Delegating Rotation
A delegated event rotation is verified against a rotation message with the associated delegation

structure in the delegator’s event stream. The message conveying the eth delegated rotation
operation that occurs as the dth event that authorizes a delegated rotation may be denoted as
follows:

ε k = C, tk ,η ε k−1(), rot, Kl+1,
⌢
Cl+1,Ml ,

⌢
Xl ,
⌢
Yl ,
⌢
Δe
D , ⌢el ,

⌢sl
⌢σ l , (7.7)

where
⌢
Δe
D = D, drt, perms, Ke

D ,
⌢
De

D ,Me
D ,
⌢
Xe

D ,
⌢
Ye

D{ } , (7.8)

is the delegation structure and the other fields are as defined in eq. 4.28 eq. 5.10, and eq. 9.8.
The main difference is the data{ } field has been set to the delegation structure

⌢
Δe
D , i.e.

data{ } =
⌢
Δe
D . The contents of the delegation structure are as follows: D is the unique identifier

of the delegate controlled by key-pair D0, d 0() , dip is the value of the delegated event ilk,
perms is a data structure that when not empty provides specific permission to the delegate and
when empty indicates default permissions, Ke

D is the threshold number of a total of L0
D

authorized delegated signing key-pairs,
⌢
De

D = Dre
D

,…, Dre
D+Le

D−1⎡⎣ ⎤⎦l is a list of the public keys for

the Le
D associated delegated signing key-pairs, Me

D is the tally of witnesses sufficient out of a
total Ne

D for events to be deemed valid by a judge (validator), the eth exclude (omit) witness list
⌢
Xe

D = X0
D ,… , X

Oe
D−1
D⎡

⎣
⎤
⎦e

 contains a list of the identifiers (public keys) of Oe
D designated witnesses

59/80

that are to be removed from the list of witnesses, the eth include (append) witness list
⌢
Ye

D = Y0,… ,YPeD−1
⎡
⎣

⎤
⎦e

 contains a list of the identifiers (public keys) of Pe
D designated witnesses

that are to be added to the list of witnesses. The contents of the delegation structure are used to
create the delegated inception event (see 7.1.2). The signatures, ⌢σ l =σ Ce0+rl−1…σ

CeEl−1+rl−1
σ

Cs0+rl…σ
CsSl−1+rl

, attached to this rotation event authorize the delegation.

An example JSON serialized version of the rotation event message delegating rotation follows:
{
 "id": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
 "sn": 2,
 "digest": "GEj6YfRWmGViKAesa08UkNWukUkPGsdFPPboBAsjRBw=",
 "ilk": "rot",
 "threshold": 2,
 "ensuers":
 [
 "WoNZsa88VrTkep6HQt27fTh-4HA8tr54sHON1vWl6FE=",
 "8tr54sHON1vWVrTkep6H-4HAl6FEQt27fThWoNZsa88=",
 "VrTkep6HHA8tr54sHON1Qt27fThWoNZsa88-4vWl6FE="
],
 "tally": 2,
 "prune":
 [
 "VrTkep6H-Qt27fThWoNZsa884HA8tr54sHON1vWl6FE=",
],
 "graft":
 [
 "HA8tr54sHON1vWl6FEVrTkep6H-Qt27fThWoNZsa884=",
],
 "delegate":
 {
 "id": "UhL0JRaU2_RxFP0AL4Xq5YqaL6L48pf0fu7I3wYn148=",
 "ilk": "drt",
 "perms": {},
 "threshold": 2,
 "signers":
 [
 "WoNZsa88VrTkep6HQt27fTh-4HA8tr54sHON1vWl6FE=",
 "8tr54sHON1vWVrTkep6H-4HAl6FEQt27fThWoNZsa88=",
 "VrTkep6HHA8tr54sHON1Qt27fThWoNZsa88-4vWl6FE="
],
 "tally": 2,
 "prune":
 [
 "VrTkep6H-Qt27fThWoNZsa884HA8tr54sHON1vWl6FE=",
],
 "graft":
 [
 "HA8tr54sHON1vWl6FEVrTkep6H-Qt27fThWoNZsa884=",
]

60/80

 },
 "ersters": [0,2],
 "signers": [3,4]
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="
\r\n\r\n
"KFFgf8i0tDq8XGizaCgAeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQ
oYKBYrPPxAoIc1i5SHCIDS8=="
\r\n\r\n
"Hot0pmdWAcgTo5sKFFgf8i0tDq8XGizaCgAeYbsD8iAuSQAfnH5U6wiIGpVNJQQ
oYKBYrPPxAoIc1i5SHCIDS8=="
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="

7.6 Delegate Interaction Event
A delegate receives authority to sign interaction event messages via the associated delegated

inception and rotation events. The actual signed interaction event is not itself delegated but is
produced solely by the delegate. The delegate interaction event occurring as the dth event in the
sequence for delegate labeled D and signed with thresholded multi-signatures specified by the
eth delegated rotation event may be denoted as follows:

εd = Dεd
= D, td ,η εd−1(),itc, data, ⌢sdD ⌢σ d (7.9)

where the identifier D is uniquely bound to the key-pair D0, d 0() , with public key, D0 , which is

controlled by the private key, d 0 , td is the unique monotonically increasing sequence number
for this the dth event, η εd−1() is the digest of the previous event in the delegates event
sequence, itc is the event ilk representing a generic interaction event, data{ } is the payload

data structure for the event, and ⌢sd
D = s0,…, sSd−1⎡⎣ ⎤⎦d is a list of length Sd

D of integer indices into

the list,
⌢
De

D = Dre
D

,…, Dre
D+Le

D−1⎡⎣ ⎤⎦e , of controlling key-pair signers activated in the eth rotation

event, re is the starting index of the subsequence of controlling key-pairs for the eth delegated
rotation (see Section 2.9), and ⌢σ d is the set of digital signatures that sign the contents of the
brackets, . The number of signatures in the set ⌢σ d is equal to the length, , of the Sd

D signers
list. Each element of the signers list produces one signature. The appropriate index into the
sequence of controlling key-pairs is computed from the offset given by each element of
associated signers list added to the starting index of the respective subsequence of key-pairs.
This may be denoted as follows:

⌢σ d =σ Ds0+re
D…σ

D
s
Sd
D−1

+re
D . (7.10)

In this derivation, the key-pair D j , d j() is the j th key-pair in a pre-rotated sequence of key-pairs
controlled by D. Each rotation indexed by e consumes one or more of these key-pairs.

61/80

Furthermore, the list of zero based integer indices of signers ⌢sd
D = s0,…, sSdD−1

⎡
⎣

⎤
⎦d

 is of length Sd
D

and satisfies Ke
D ≤ Sd

D ≤ Le
D where Ke

D is the threshold and Le
D is total number of of signers as

activated by the eth rotation. Each index refers to a key-pair from the list of public keys
⌢
De

D = Dre
D

,…, Dre
D+Le

D−1⎡⎣ ⎤⎦e taken as a subsequence of the set of all D j , d j() . The indices may be

used to generate a list of signing signers with the notation (see Section 2.9). From this list the
associated Sd

D signatures ⌢σ d =σ Ds0+re
D…σ

D
s
Sd
D−1

+re
D are produced. There are Sd

D signatures attached

to the event. The combination comprises ⌢σ k defined in eq. 7.10.

An example JSON serialized version of the delegate interaction event message follows:

{
 "cid": "UhL0JRaU2_RxFP0AL4Xq5YqaL6L48pf0fu7I3wYn148=",
 "sn": 3,
 "digest": "GEj6YfRWmGViKAesa08UkNWukUkPGsdFPPboBAsjRBw=",
 "ilk": "itc",
 "data":
 {
 "first":"John",
 "last":"Smith"
 },
 "signers": [0,2]
}
\r\n\r\n
"AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHC
IDS8KFFgf8i0tDq8XGizaCg=="
\r\n\r\n
"QQoYKBYrPPxAoIc1i5SHCAeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJ
IDS8KFFgf8i0tDq8XGizaCg=="

8 WEIGHTED THRESHOLD MULTI-SIGNATURE SCHEME

Any of the threshold multi-signature forms presented elsewhere in this work may be modified
to support a fractional weighted threshold by changing the threshold number (integer) into a list
of fractional values where each value is between 0 and 1. In this scheme, a valid signature set is
any subset of signatures whose corresponding weights sum to 1 or greater. For example a thresh-
old signature scheme for the following ordered list of signers:

⌢
C = C1,C 2,C 3⎡⎣ ⎤⎦ , (8.1)

where any 2 of 3 signatures is valid may be represented equivalently by the following ordered
list of fractional weights,

⌢
K = 1

2 , 12 , 12[] , (8.2)

where any combination of two or more weights would sum to at least 1. To generalize let the
l th ordered set of controlling signers be denoted as follows:

⌢
Cl = Cl

1,…,Cl
Ll⎡⎣ ⎤⎦l , (8.3)

62/80

where
⌢
Cl represents the l th list, Ll is the number of signers in the list, and each Cl

j in the list is
the public key from a signing key-pair. The corresponding l th ordered list of fractional weights
(one-to-one for each signer) may be denoted as follows:

⌢
Kl = Ul

1,…,Ul
L1⎡⎣ ⎤⎦l , (8.4)

where
⌢
Kl represents the l th list, Ll is the number of weights in the list, and each Ul

j in the list
is the weight for the corresponding signer. Each weight satisfies:

0 <Ul
j ≤1 . (8.5)

A subset of the full list of signatures may be attached to some event. Let it be the kth event. This
subset may be represented by a list of zero based indexes (offsets) into the l th list of signers and
weights given by eq. 8.3 and eq. 8.4 The indexed list may denoted as follows:

⌢sk
l = s0,…, sSkl −1

⎡
⎣

⎤
⎦k
l

, (8.6)

where ⌢sk
l represents the ordered indexed list of offsets into the l th list of signers attached to the

kth event, Sk
l is the number of attached signers, and each si is a zero based offset into both

⌢
Cl

and
⌢
Kl . A set of signatures is valid when the associated weights satisfy sum to greater than or

equal 1, such as:

Ul = Ul
i

i=s0

sSk−1∑ ≥1 , (8.7)

where Ul represents the sum, i in the summation is assigned to successive values from the list of

offsets, ⌢sk
l = s0,…, sSkl −1

⎡
⎣

⎤
⎦k
l

, that is, i ∈⌢sk
l , and Ul

i is the weight at the offset i. Care must be

taken when using floating point representations to account for floating point rounding errors in
the summation. One way to avoid this problem is to use rational fractional number
computations. Some programming languages support explicit rational fractional calculations.
For example the fractions module in Python.

In its simplest form, as the example above showed, this weighted threshold scheme may be
made to act equivalently to the more simpler K of L threshold scheme by assigning equal
weights as follows:

Ul
j = 1

Kl
, (8.8)

where Kl is the threshold count of signatures in a conventional K of L threshold scheme. The
real power of the weighted threshold scheme is expressed by unequal weights. This allows
different combinations of signers to reach a valid signature set.

Suppose for example that the l th weight list is as follows:
⌢
Kl = 1

2 , 12 , 14 , 14 , 14 , 14[]l . (8.9)

In this case, a valid signature set occurs either when both the first two signers sign, or when any
one of the first two sign and any two or more of the last four sign, or when all four of the last
four sign. This allows different degrees of signing strength or signing authority to be assigned to
signers as a way to reflect different degrees of trust in the signers. This allows the assignment of
role based signing authority and hierarchical authority. Effectively, in the example above, the
first two signers have the sam authority together as the last four have together. The first two

63/80

could be higher level managers and the last four lower level managers. Using delegation further
extends the capability. Multiple distinct delegated sets of weighted multi-signature scheme pro-
vides extreme flexibility for managing signing authority arrangements.

As described above, simply replacing the integer valued Kl with the list valued
⌢
Kl in any of

the aforementioned multiple signature capable event definitions may enable weighted multiple
signatures. For example the inception event, ε0 = C, t0,icp,C

0, K1,
⌢
C1 ,M 0,

⌢
W0 σ

C0
becomes

ε0 = C, t0,icp,C
0,
⌢
K1,
⌢
C1 ,M 0,

⌢
W0 σ

C0
where

⌢
K1 is a weight list. Furthermore the delegated

inception Dε0
= D, t0, dip,

⌢
Δk
C , D0, perms, K0

D ,
⌢
D0

D ,M 0
D ,
⌢
W0

D σ
D0

becomes

Dε0
= D, t0, dip,

⌢
Δk
C , D0, perms,

⌢
K0

D ,
⌢
D0

D ,M 0
D ,
⌢
W0

D σ
D0

 where
⌢
K0

D is a weight list.

9 IMPLEMENTATION

9.1 Universal Semantics and Syntax
One purpose of KERI is to provide minimally sufficient means for decentralized key
management infrastructure (DKMI). This allows it to be used in the broadest range of potential
applications. Given this broad application range another potential advantage of KERI is that it
may enable a portable DKMI. Decentralized identifiers allow control by disparate entities, not a
central administrator but are also interoperable amongst the entities, thus making the identifiers
portable. Portable decentralized identifiers enable network effects among applications and
tooling that use the identifiers. Likewise a portable DKMI extends network effect advantages to
not just the identifiers but the key management infrastructure supporting the identifiers. Because
DKMI requires user participation, the lack of interoperable portable DKMI means that despite
portable decentralized identifiers, the user experience of client application and wallets that use
those identifiers will not be very portable. KERI is a candidate for a portable interoperable
DKMI. By defining its semantics and syntax to be sufficiently flexible to accommodate the vast
majority of use cases, and employing best practices for security but in a scalable and performant
manner, KERI has the potential to be a universal DKMI specification.
The following sections map the various options for KERI onto a single universal syntax
with consistent conventions for semantics. This allows a single implementation of both
servers and clients but that accommodates application specific tuning of the features.

In general the protocol variation that supports offline multiple signatures and witnesses with
the interaction data payload is the most generic set of syntax and semantics. All the other varia-
tions are special cases of that variation. The differences lie in the event syntax and associated se-
mantics. Specifically a given variation may not include one or more of the fields in the associat-
ed events and as a result has different semantics. However if we adopt the convention that
missing fields have defined default values then all the syntax variations can be mapped to a sin-
gle universal syntax expression for each event. This enables a single semantic implementation of
the underlying verification and validation logic. The following sections describe these mappings.

9.1.1 Inception
9.1.1.1 Multiple Signature With Witnesses

The most general expression for the inception event is as follows:

ε0 = C, t0,icp,C
0, K1,

⌢
C1 ,M 0,

⌢
W0 σ

C0
, (9.1)

64/80

where,
⌢
C1 = C1,…,CL1⎡⎣ ⎤⎦1 , (9.2)

and
⌢
W0 = W0 ,… ,WN−1⎡⎣ ⎤⎦0 . (9.3)

This expression supports multiple-signatures with a threshold as well as multiple witnesses with
a tally. This is described above in Section 4.3.1.

9.1.1.2 Single Signature With Witnesses
A subset of the general inception expression is to only use a single signature with witnesses.

This is expressed as follows:

ε0 = C, t0,icp,C
0,C1,M 0,

⌢
W0 σ

C0
. (9.4)

The expression above is described in Section 4.1.1. It is equivalent to a multi-signature event
expression but where the threshold is 1 and only one ensuer is declared. Therefore an implemen-
tation may map an event with a missing threshold field and a single ensuer (ensuing public key)
to an equivalent event with a threshold of 1 and an ensuer array with one element. This is denot-
ed as follows:

ε0 = C, t0,icp,C
0, 1, C1⎡⎣ ⎤⎦,M 0,

⌢
W0 σ

C0
. (9.5)

9.1.1.3 Single Signature Without Witnesses
A smaller subset of the general inception expression is to only use a single signature but with-

out witnesses. This is expressed as follows:

ε0 = C, t0,icp,C
0,C1 σ

C0
. (9.6)

The expression above is described in Section 3.1.1. It is equivalent to a witnessed event ex-
pression but where the tally is 0 and the witness list is empty. Furthermore, like the previous
variation, the threshold is 1 and only one ensuer is declared. Therefore an implementation may
map an event with missing tally, missing witness list fields, missing threshold field, and a single
ensuer (ensuing public key) to an equivalent event with a tally of zero, empty witness list, a
threshold of 1, and an ensuer array with one element. This is denoted as follows:

ε0 = C, t0,icp,C
0, 1, C1⎡⎣ ⎤⎦, 0, [] σ C0

.

9.1.1.4 Multiple Signature Without Witnesses
A different subset of the general inception expression is to only use multiple signatures but

without witnesses. This is expressed as follows:

ε0 = C, t0,icp,C
0, K1, C

1,…,CL1⎡⎣ ⎤⎦ σ
C0

. (9.7)

The expression above is described in Section 3.2.1. It is equivalent to a witnessed event ex-
pression but where the tally is 0 and the witness list is empty. Therefore an implementation may
map an event with missing tally and missing witness list fields to an equivalent event with a tally
of zero and empty witness list. This is denoted as follows:

ε0 = C, t0,icp,C
0, K1, C

1,…,CL1⎡⎣ ⎤⎦, 0, [] σ C0
.

65/80

9.1.2 Rotation
9.1.2.1 Multiple Signature With Witnesses

The most general expression for the extended rotation event is as follows:

ε k = C, tk ,η ε k−1(), rot, Kl+1,
⌢
Cl+1,Ml ,

⌢
Xl ,
⌢
Yl , data{ }, ⌢el , ⌢sl

⌢σ l , (9.8)

where
⌢
Cl+1 = Crl+1 ,…,Crl+1+Ll+1−1⎡⎣ ⎤⎦l+1 (9.9)
⌢
Xl = X0,… , XOl−1

⎡⎣ ⎤⎦l , (9.10)
⌢
Yl = Y0,… ,YPl−1⎡⎣ ⎤⎦l , (9.11)

data{ } is interaction payload data structure, (9.12)
⌢el = e0,…, eEl−1⎡⎣ ⎤⎦l , (9.13)

⌢sl = s0,…, sSl−1⎡⎣ ⎤⎦l , (9.14)

and
⌢σ l =σ Ce0+rl−1…σ

CeEl−1+rl−1
σ

Cs0+rl…σ
CsSl−1+rl

. (9.15)

This expression supports multiple-signatures with a threshold as well as multiple witnesses with
a tally. A rotation event includes the ensuers list of ensuing signers and two sets of signatures,
from the previously declared ersters and signers. Each set may have multiple signatures. This is
described above in Section 4.3.3.

9.1.2.2 Single Signature With Witnesses
A subset of the general rotation expression is to only use a single ensuer and a single signature

for each of the erster and signer but with witnesses. This is expressed as follows:

ε k = C, tk ,η ε k−1(), rot,Cl+1,Ml ,
⌢
Xl ,
⌢
Yl σ

Cl−1σ Cl , (9.16)

where
⌢
Xl = X0,… , XOl−1

⎡⎣ ⎤⎦l , (9.17)

and,
⌢
Yl = Y0,… ,YPl−1⎡⎣ ⎤⎦l . (9.18)

The expression above is described in Section 4.1.3. It is equivalent to a multi-signature event
expression but where the threshold is 1 and only one ensuer is declared and the interaction pay-
load is empty. Likewise for each of the erster and signer index lists only one index is needed.
Therefore an implementation may map an event with a missing threshold field, a single ensuer
(ensuing public key), and missing erster and signer index lists to an equivalent event with a
threshold of 1, an ensuer array with one element., erster index list with one element, and signer
index list with one element. This is denoted as follows:

ε k = C, tk ,η ε k−1(), rot, 1, Cl+1⎡⎣ ⎤⎦,Ml ,
⌢
Xl ,
⌢
Yl , { }, 0[]l , 0[]l

⌢σ l , (9.19)

where

66/80

⌢
Xl = X0,… , XOl−1

⎡⎣ ⎤⎦l , (9.20)
⌢
Yl = Y0,… ,YPl−1⎡⎣ ⎤⎦l , (9.21)

and
⌢σ l =σ Cl−1σ Cl . (9.22)

9.1.2.3 Single Signature Without Witnesses
A subset of the general rotation expression is to only use a single signature but without wit-

nesses. This is expressed as follows:

ε k = C, tk ,η ε k−1(), rot,Cl+1 σ
Cl−1σ Cl . (9.23)

The expression above is described in Section 3.1.3. It is equivalent to a witnessed event ex-
pression but where the tally is 0 and the witness list is empty. Furthermore, like the previous
variation, the threshold is 1 and only one ensuer is declared and the interaction data payload is
empty. Moreover the ersters and signers index lists would have only one element. Therefore an
implementation may map an event with missing tally, missing witness list fields, missing thresh-
old field, a single ensuer (ensuing public key), missing ersters index list, and missing signers in-
dex list to an equivalent event with a tally of zero, empty witness list, a threshold of 1, and an
ensuers array with one element, and ersters index list with one element, and a signers index list
with one element. This is denoted as follows:

ε k = C, tk ,η ε k−1(), rot, 1, Cl+1⎡⎣ ⎤⎦, 0l , []l , []l , { }, 0[]l , 0[]l σ
Cl−1σ Cl .

9.1.2.4 Multiple Signature Without Witnesses
A different subset of the general expression is to only use multiple signatures but without wit-

nesses. This is expressed as follows:

ε k = C, tk ,η ε k−1(), rot, Kl+1,
⌢
Cl+1 ,

⌢el ,
⌢sl
⌢σ l , (9.24)

where
⌢
Cl+1 = Crl+1 ,…,Crl+1+Ll+1−1⎡⎣ ⎤⎦l+1 , (9.25)

⌢el = e0,…, eEl−1⎡⎣ ⎤⎦l , (9.26)

⌢sl = s0,…, sSl−1⎡⎣ ⎤⎦l , (9.27)

and
⌢σ l =σ Ce0+rl−1…σ

CeEl−1+rl−1
σ

Cs0+rl…σ
CsSl−1+rl

. (9.28)

The expression above is described in Section 3.2.3. It is equivalent to a witnessed event ex-
pression but where the tally is 0 and the witness list is empty. Therefore an implementation may
map an event with missing tally and missing witness list fields to an equivalent event with a tally
of zero and empty witness list. This is denoted as follows:

ε k = C, tk ,η ε k−1(), rot, Kl+1,
⌢
Cl+1, 0l , []l , []l , { }, ⌢el , ⌢sl

⌢σ , (9.29)

where
⌢
Cl+1 = Crl+1 ,…,Crl+1+Ll+1−1⎡⎣ ⎤⎦l+1 , (9.30)

67/80

⌢el = e0,…, eEl−1⎡⎣ ⎤⎦l , (9.31)

⌢sl = s0,…, sSl−1⎡⎣ ⎤⎦l , (9.32)

and
⌢σ l =σ Ce0+rl−1…σ

CeEl−1+rl−1
σ

Cs0+rl…σ
CsSl−1+rl

. (9.33)

9.1.3 Interaction
9.1.3.1 Multiple Signature

The most general expression for the generic interaction event is as follows:

ε k = Cεk
= C, tk ,η ε k−1(),itc, data{ }, ⌢sk

⌢σ k , (9.34)

where
⌢sk = s0,…, sSk−1⎡⎣ ⎤⎦k , (9.35)

and
⌢σ k =σ Cs0+rl…σ

CsSk−1+rl
. (9.36)

This expression supports multiple-signatures with a threshold where the threshold and set of
potential signers is declared in a previous rotation event. This is described above in Section
5.1.3.

9.1.3.2 Single Signature
A subset of the general interaction expression is to only use a single signature. This is ex-

pressed as follows:

ε k = C, tk ,η ε k−1(),itc, data σ
Cl . (9.37)

The expression above is described in Section 5.1.1. It is equivalent to a multi-signature event
but where the signers index list has only one element and the default threshold is one. Therefore
an implementation may map an event with signers index list to an equivalent event with a sign-
ers index list with one element. This is denoted as follows:

ε k = C, tk ,η ε k−1(),itc, data, 0[]k σ
Cl .

9.2 State Engine
9.2.1 Controlling State Verification Engine

Using the general representations provided above for the three events, namely, inception, rota-
tion, and interaction a generic state verification algorithm or engine can be formulated. This be-
comes the KERI verifier core and would be portable to all applications. The state verifier engine
maintains the current verified state. The state engine process events from an event stream and
updates the state from the current to the next state as a function of the current state and a verified
event message. Processing is largely signature verification. The state maintains the list of des-
ignated witnesses but does not perform any validation against the number of event receipts. A
witness, judge, or validator application would include the KERI state engine to provide event
message verification. A controller application also maintains its copy of the state with a comple-
mentary state generator engine that instead of updating state based on external events, updates
state based on internally generated events. The controller and validator applications may also in-
cludes an identifier mapper that maps the public key to/from the associated identifier. This map-

68/80

per is the interface that allows identifier independence of the core state verifier engine. A judge
application would also perform additional validation based on witnessed event receipts and the
current state of the tally and witness list from the KERI core state engine. Diagrams of the KERI
event message state verification or state engine and the component applications are shown
below:

Current State

Current Signatories

ID

KERI Core — State Verifier Engine

SN Digest SignersThreshold

Next Signatories

SignersThreshold Tally Witnesses

Hash

Event Message

Next State

Current Signatories

ID SN Digest SignersThreshold

Next Signatories

SignersThreshold Tally Witnesses Event Message

Event Message
Event Processing

+

Figure 9.1. KERI Core State Verification Engine

Controller of Identifier A

KEL/KERL of A
Key Event Log

Key Event Receipt Log

Event Generator
State Engine

Identifier Mapper

Validator of Identifier A

KEL/KERL of A
Key Event Log

Key Event Receipt Log

Event Verifier
State Engine

Identifier Mapper

Witness of Identifier A

KEL/KERL of A
Key Event Log

Key Event Receipt Log

Event Verifier
State Engine

Public Key A

Event Validator
Receipt Engine

Judge of Identifier A

KEL/KERL of A
Key Event Log

Key Event Receipt Log

Event Verifier
State Engine

Event Validator
Receipt Engine

Public Key A Public Key A

Public Key A

Figure 9.2. KERI Components that Employ the Core Engine.

9.2.2 Delegated State Verification Engine
A delegated key event stream has a different verification engine. It includes delegation data

and requires verification of the delegator’s delegating event. A diagram is shown below:

69/80

Current State

ID

KERI Delegated Core — State Verifier Engine

SN Digest Controller Perms

Signatory

SignersThreshold Tally Witnesses

Hash

Event Message

Next State

ID SN Digest Controller

Signatory

SignersThreshold Tally Witnesses Event Message

Event Message
Event Processing+

Delegation

ID SN Digest

Perms

Delegation

ID SN Digest

Verify Delegator

Figure 9.3. KERI Delegated Core State Verifier Engine

9.3 Identifier Independence
The KERI events reference entities with identifiers that are uniquely bound to key-pairs. A

controller has an identifier labeled C that is bound to a key-pair C 0, c0() . Because the likelihood
of collision of public keys generated with cryptographic strength digital key systems is remote,
therefore, with loss of generality, in the event descriptions, the identifier bound to a key-pair
may be equal to the public key. For example, C = C 0 . Using only the public key enables the
core parts of a KERI implementation to be independent of the syntax for specific types of self-
certifying identifiers. In the case of DIDs this means that the KERI core may be DID method in-
dependent. Indeed the KERI core may be made independent of any identifier syntax other than
that the identifier be uniquely bound to a cryptographic strength signing (public, private) key-
pair. The public key becomes the universally unique identifier for the core and identifier specific
syntax for other sections of the identifier may be handled by an identifier specific client.

This feature means that KERI may be used for any identity system based on self-certifying
identifiers. This includes Ethereum smart contracts for example or other systems. In addition to
its scalability and performance adaptability this feature makes KERI a candidate for a universal
portable DKMI system.

9.4 Hierarchical Key Infrastructure
As discussed earlier, a common approach to key rotation management is to have a special pur-

pose management (administrative) rotation key-pair whose function is to authorize rotation oper-
ations on a signing key-pair. This poses the problem that after multiple rotations the manage-
ment rotation key becomes exposed and may be vulnerable to exploit. Consequently another
higher level management rotation key may be needed to authorize rotation’s of the lower level
management rotation key and so on. In it simplest form KERI’s pre-rotation approach uses just
one level of keys. In essence a pre-rotated key is a self-managed (self-rotating) key where the
pre-rotated key is effectively a one-time use management key that authorizes the next rotation.
Once the rotation is completed a new management key is created and the old management key
may be repurposed as a new signing key.

Pre-rotation, however, can be applied in hierarchical arrangements as well. For example, a pre-
rotated key may be used only as a self-managed rotation key that is never used to sign attesta-

70/80

tions besides rotation/management but instead controls a different of a set of signing keys. The
self-rotated key thereby avoids the infinite regress of even higher level management keys. Be-
cause KERI follows the design aesthetic of minimally sufficient means, the KERI core key state
verification engine employs this single level approach where as operational primitive, manage-
ment rotation keys are one-time use but then may be optionally repurposed as signing keys.
More complex applications may be supported via composition of this primitive into multi-layer
designs instead of designing a bespoke primitive for each application. This section will discuss
how to compose systems with different features using the KERI core engine. For the sake of
simplicity the examples in the following subsections are based on single-signature versions of
the events but without loss of generality may be extended to thresholded multiple-signature ver-
sions of the events.

9.4.1 Repurposed Key Mode
The KERI core key state verification engine may be analyzed as managing a single sequence

of key-pairs. What may not be obvious is that each key-pair may serve two different roles in its
life-cycle. Each key starts as a one time use administrative (management) key for rotation and
then after it is used to authorize a single rotation operation event may optionally become a multi-
ple use signing key for interaction operation events. To better understand how this works consid-
er the sequence of key-pairs as represented by the associated public key for each pair as follows:

C j
j=0,1,… , (9.38)

such as C 0,C1,C 2,… where the public key represents the key-pair.

When a key-pair is exposed in the sense that the private key has been used to create a signature
a dot is added to the symbol for the key-pair, such as, !C j .

When a key-pair’s role is to sign key management events such as inception or rotation, i.e. ad-
ministrative, an uppercase A is added as a subscript such as, CA

j . When a key-pair’s role is to
sign interaction events an uppercase S is added as a subscript, such as, CS

j . Using this notation
an inception events message may be denoted as follows:

ε0 = C, t0,icp,CA
0 ,CA

1 σ
CA
0 (9.39)

After the message is created !CA
0 is exposed and CA

1 has not yet been exposed. As mentioned
previously best practice is to immediately follow an inception with a rotation so that the
originating key-pair for the identifier has minimal exposure. Therefore, let the next event be a
rotation denoted as follows:

ε1 = C, t1,η ε0(), rot,CA
2 σ !CA

0σ CA
1 . (9.40)

Notice that !CA
0 which was used to sign the inception message is also used to sign the rotation

message. This bridges its signing authority from the prior inception message which means that
two keys must be exploited in order to forge the rotation message. After the rotation message is
created !CA

0 may be discarded. It is effectively a one time use administrative key that is used for
one pair of immediately successive administrative messages. Furthermore !CS

1 is now exposed
and may now be repurposed as a signing key for subsequent interaction messages. Finally, CA

2
has not yet been exposed and is the new administrative key.

Let the next event be an interaction event denoted as follows:

71/80

ε2 = C, t2 η ε1(),itc, data{ } σ !CS
1 . (9.41)

where the signing key is !CS
1 . Furthermore let there be a total of I successive interaction events.

Each event is signed with the same signing key. Following the I th interaction event a rotation
event occurs. It may be denoted as follows:

ε1+I = C, t1+I ,η ε I(), rot,CA
3 σ !CS

1σ CA
2 . (9.42)

After this event !CS
1 may be discarded, !CS

2 is exposed and becomes the new signing key, and CA
3

is the unexposed new administrative key. This may be followed by another set of interaction
events all signed with !CS

2 . The next event may be denoted as follows:

ε2+I = C, t2+I ,η ε1+I(),itc, data{ } σ !CS
2 . (9.43)

One major purpose, of KERI is to support data streaming applications that may benefit from
more performant computation infrastructure that includes the key support infrastructure. In this
case only one key support infrastructure is needed for both the management and signing and re-
purposing the one-time used management key does not pose a problem. In this sense KERI pro-
vides self-managing signing keys that inhabit the same computation infra-structure as the inter-
action messages they are signing.

9.4.2 Varied Key Support Infrastructure
In some key management schemes, however, different key support infrastructures are used for

management (administrative) keys and signing keys. Management operations may be more criti-
cal but happen less frequently. Consequently a more secure albeit less convenient infra-structure
such as a hardware security module (HSM) may be employed to store private keys and create
signatures. In contrast, signing operations for interactions may be less critical but happen much
more frequently and therefore may use a more convenient infra-structure for storage and signing.
A disparity in key support infrastructure for administrative and signing keys may pose a problem
for the simple KERI pre-rotation approach described above where the administrative keys are re-
purposed as signing keys. When the infrastructure is disparate, in order for a management key to
be repurposed as a signing key it would have to first be moved from one support infrastructure
to the other. An important caveat is that KERI only uses a key as a management key for one-time
use whereas in many other systems the management keys may be used multiple times. Pre-rota-
tion forces rotation of the management key on each rotation whereas with other (hierarchical)
approaches it may not be forced. In order for a disparate key support system with hierarchical
keys (i.e. where administrative and signing keys use different infrastructure) to have the equiva-
lent security properties to KERI, the administrative keys must be one-time use keys. In other
words, the management (administrative) keys must be rotated on each use.

9.4.2.1 Double Rotation Mode
When disparate key support infra-structures for administrative versus signing keys are desir-

able then KERI may be used in double rotation mode. This does not require any changes to the
KERI core state verification engine but merely a change to how the key generation engine is
used. This may be thought of as analogous to the CISC (complex instruction set computer) vs
RISC (reduced instruction set computer) design tradeoff. A CISC computer employs a larger set
of more complex instructions each with a more narrowly designed application. This makes the
overall computer hardware more complex and often each infrastructure may execute slower as a
result. In contrast, a RISC computer employs a smaller set of simpler instructions each with a
more generally designed application. More complex tasks are performed by using appropriate

72/80

combinations of the simpler instructions. This requires more effort by the compiler but may be
implemented with simpler less expensive hardware where each instruction may execute faster as
a result. Likewise the design approach of KERI is to employ simple key management primitives
that may be composed to create more complex application specific key management operations.
This allows the KERI core state verification engine to remain as simple as possible. Two pre-ro-
tations per effective rotation makes it possible to avoid moving the management (administrative)
keys from their support infrastructure to the signing key support infra-structure.

The following examples explains how double rotation mode enables management and signing
keys sets to each have disparate key support infrastructures where management keys may never
need be moved from the administrative key support to the signing key support infrastructure. In
double rotation mode there are two alternating sub-sequences of keys, administrative and
signing. The administrative sub-sequence is denoted as follows:

CA
j

j=0, 2, 4,… , (9.44)

such as, CA
0 ,CA

2 ,CA
4 ,…. The signing sub-sequence is denoted as follows:

CS
j

j=1, 3, 5,… , (9.45)

such as CS
1,CS

3,CS
5,… . As the expressions above show the administrative sub-sequence are the

even numbered and the signing sub-sequence the odd numbered key-pairs from the original
sequence.

In this double rotation mode, rotation operation occur in pairs with no intervening events. The
inception event counts as a special rotation and is immediately followed by another rotation.
each pair of rotations counts as a one time use of the associated keys. The first pair may be de-
noted as follows:

ε0 = C, t0,icp,CA
0 ,CA

1 σ
CA
0

ε1 = C, t1,η ε0(), rot,CA
2 σ !CA

0σ CS
1

. (9.46)

After the first (inception) event in the operation pair !CA
0 is exposed and CS

1 is unexposed. !CA
0

uses the administrative key support infrastructure and CS
1 uses the signing key support

infrastructure. After the second (rotation) event !CS
1 becomes the current signing key, CA

2
becomes the current (unexposed) administrative key, and !CA

0 may be discarded after its one time
use for the double rotation operation. It is never used to sign interaction events. Although !CS

1
was used to sign the second event, its signature merely provides additional security. There is no
security lack with respect to key support infrastructure because !CA

0 signed both events as the
administrative key and employs the administrative key support infra-structure. This operation
pair may now be followed with a set of I interaction events signed only with !CS

1 . Moreover !CS
1

always resides in the signing infrastructure. The successive interaction event may be denoted as
follows:

ε2 = C, t2 η ε1(),itc, data{ } σ !CS
1 . (9.47)

Let a total of I interaction events follow the rotation. Suppose that after the I th interation event
another pair of rotation events may occur as follows:

73/80

ε1+I = C, t1+I ,η ε I(), rot,CA
3 σ !CS

1σ CA
2

ε2+I = C, t2+I ,η ε1+I(), rot,CA
4 σ !CA

2σ CS
3

. (9.48)

After the first (rotation) event in the pair !CA
2 is exposed and CS

3 is unexposed. !CA
2 uses the

administrative key support infrastructure and CS
3 uses the signing key support infrastructure.

After the second (rotation) event !CS
3 becomes the current signing key, CA

4 becomes the current
(unexposed) administrative key, and !CA

2 may be discarded after its one time use for the double
rotation operation. It is never used to sign interaction events. Although !CS

3 was used to sign the
second event it merely provides additional security. There is no security lack relative to key
support infrastructure because !CA

2 which uses the administrative infrastructure signed both
events as the administrative key. This pair may now be followed with interaction events signed
only with !CS

3 . Moreover !CS
3 does not need to be moved but may always reside in the signing

infrastructure. The successive interaction event may be denoted as follows:

ε3+I = C, t3+I ,η ε2+I(),itc, data{ } σ !CS
2 . (9.49)

This process may be repeated indefinitely where the sub-sequence of CA
j key-pairs may use a

different key support infrastructure than the sub-sequence of CS
j key-pairs without having to

move any keys between the two infrastructures. Importantly this double rotation mode works
just as well as the single rotation mode with the KERI core state verification engine without
modification to the engine.

9.4.2.2 Delegation Mode
A limitation of double rotation mode is that it only supports one set of signing keys managed

managed by one set of pre-rotated administrative keys. In essence double rotation defines two
sets of keys, that are, a pre-rotated sequence of management key and a sequence of signing keys.
A more general approach is to use delegation as described in 6.7 to create the set of signing
keys. With delegation any number of sets of signing keys may be managed by one set of admin-
istrative keys. Delegation means that double rotation is not needed as the controlling key se-
quence is only used one time each for management events and is never used as a signing key.

From this perspective the administrative sequence is denoted as follows:

A j
j=0,1,… , (9.50)

such as, A0, A1, A2,… . The signing key sequence is denoted as follows:

S j
j=0,1,… , (9.51)

such as S0, S1, S2,… . The administrative key-pairs, A j , may use different key support
infrastructure from the signing key-pairs S j . The delegated signing key in the rotation event is
not part of the sequence of keys used for administration. This semantically creates a key
hierarchy. In essence the rotation operation is delegating signing authority from the
administrative key to the signing key. Because the key-pairs for the administrative and signing
keys are unique they may be associated with different identifiers. In other words, there are two
identifiers each with a controller but one controller (delegate) receives its authority via
delegation from the delegating controller (delegator). Let the identifier of the delegator be A
which is controlled by the rotated sequence A0, A1, A2,… . Controller A is delegating signing

74/80

authority to a signing key identified by S which is controlled by rotated sequence S0, S1, S2,… .
Furthermore, if A only performs key management operations (rotation or delegated rotation),
that is, none of the A j are used to sign plain interaction events then the A j may reside in a
different key support infrastructure than the S j . Double rotation is no longer required to satisfy
this condition. Furthermore, using delegation provides a powerful new building block that
allows composition in more ways. The only needed additional infrastructure is a version of the
KERI core state verification engine that supports delegated inception and rotation events.

9.4.2.3 Duet Engine
The three modes of using KERI, that are, (1) Repurposed Key Mode, (2) Double Rotation

Mode, and (3) Delegation Mode provide generic composable building blocks for DKMI. All
three modes use the KERI core state verification engine and the third (delegation mode) also
uses the KERI delegated state verification engine. With these two engines various architectures
are supported. These range from a single self-managed sequence of signing keys, to a hierarchi-
cal tree of managed signing keys. The KERI core engine may be called a solo engine because it
maintains the state of a single sequence of keys. This sequence may be used in two different
modes repurpose and double rotation. One may argue that both the double rotation mode and the
delegated mode are both more cumbersome than a custom set of inception and rotation events
that explicitly uses two sets of keys, that are, a pre-rotated sequence of management key and a
sequence of signing keys. Although simple and focused are an valuable feature, the drawback of
this approach is that it would require a new version of the state verification engine just to sup-
port that configuration. Other use cases might drive further variants to accommodate application
specific features. Indeed each additional customization to the syntax and semantics of the events
would require yet another version of the state verification engine. The task of building a univer-
sal DKMI will become problematic if every custom application needed to create its own key
event set. The design approach behind KERI is to formulate a minimal set of primitives that al-
low building almost any type of DMKI. Nonetheless the use case of a single administrative key
sequence managing a single signing key sequence may be a very important one. Maybe impor-
tant enough to justify a custom state verification engine for that use case. We call this the duet
engine because is maintains the state of two distinct key sequences. A description of the key
events for a notional duet engine is provided in an appendix (see Section 10.).

9.5 Implementation Choices
Because KERI is designed to be compatible with event streaming applications, its design lends

itself to a simple state verification engine with compact and efficient syntax. Furthermore KERI
has advanced key management features. KERI provides for reconfigurable thresholded multiple
signature schemes where both the threshold total number of signatures may change are each ro-
tation. The pre-rotation makes a forward commitment to an unexposed key-pair(s) that provides
security that may not be undone via exploit of any exposed key-pairs. This allows for reconfigu-
rability without sacrificing security. These advanced key management features alone make KERI
desirable even in non-data streaming applications where scalability and performance or not so
important. Likewise many applications for other reasons require a distributed consensus ledger.
In that case the best approach might be to use KERI but without witnesses and leverage the trust
provided by the distributed consensus nodes. A smart contract system like Ethereum (public or
private) has the capacity to support the semantics of the KERI Core state verification engine on
chain. Alternatively, KERI could be implemented as a side state channel with a Judge or Valida-
tor periodically anchoring the current state to a distributed ledger such as Ethereum or Bitcoin.
This side channel approach will work with most distributed ledgers.

75/80

As a specific comparison, consider other smart contract based systems such as identifiers cre-
ated with the ERC-1056 standard [8; 9] or control of tokenized assets using the Gnosis MuliSig-
Wallet on Ethereum [17]. Both are vulnerable to capture via exploit of the exposed signing key-
pairs. In the case of ERC-1056 only one key-air need be exploited or a threshold number of key-
pairs for MultiSig. The Gnosis MultiSig wallet is a smart contract with advanced features for
multiple signatures. It allows changes to the threshold and number of signatures as well as re-
voking and replacing signatures. In this sense it is of comparable complexity to the KERI en-
gine. The crucial limitation, however, with the Gnosis MultiSig wallet is that an exploiter of a
threshold number of exposed signing key-pairs may undo or permanently capture the wallet.
Whereas KERI’s pre-rotation scheme makes a forward commitment to unexposed key-pairs that
may not be undone via exploit of any exposed signing key-pairs. This means that recovery from
an exploit in KERI may be overcome (recaptured) by performing a rotation but not with the
Gnosis multi-sig wallet. At least the Gnosis MultiSig Wallet has the advantage of multiple-signa-
tures which ERC-1056 does not. But neither benefit from the in-stride pre-rotation security of
KERI.

Non distributed consensus ledger implementations uniquely benefit from KERI’s event
streaming design. An example implementation target may be Apache Kafka [3] or Apache Flink
[2]. Both Apache Kafka and Flink provide libraries for building scalable event processing
streams for data intensive applications. The features and semantics may differ somewhat.
Nonetheless, the KERI core stater verification engine can be implemented as either a Kafka
streams application or a Flink ProcessFunction. This allows implementation of KERI witnesses
and validators as Kafka or Flink streams. The witness receipt validation function of a KERI
Judge may also be implemented as a Kafka or Flink stream. Thus the whole KERI DKMI may
be hosted on scalable Kafka or Flink clusters. Similarly KERI may be easily implemented using
asynchronous flow based processing frameworks such as Ioflo [18].

10 KERI DUET ENGINE

This section describes a custom engine and key events that maintain two sets of keys. These
are a pre-rotated sequence of management keys and a sequence of signing keys. This may be
called a duet engine or (double key) approach, the administrative sequence is denoted as
follows:

A j
j=0,1,… , (10.1)

such as, A0, A1, A2,… . The signing key sequence is denoted as follows:

S j
j=0,1,… , (10.2)

such as S0, S1, S2,… . The administrative key-pairs, A j , may use different key support
infrastructure from the signing key-pairs S j .

The custom inception event is denoted as follows:

ε0 = C, t0,icp, A
0, A1, S0 σ

A0
, (10.3)

where A0 represents the incepting (zeroth) administrative key-pair, A0 = C 0 = C , A1 represents
the first pre-rotated administrative key-pair, S0 represents the incepting (zeroth) signing key-pair,
and the event is signed with the private key for A0 . After this event !A0 is exposed. Any number
of interaction events may follow all signed with S0 without further exposing any of the A j . If

76/80

the next event is an interaction event is may be denoted as follows:

ε1 = C, t1 η ε0(),itc, data{ } σ
S0

. (10.4)

After this event !S0 is exposed (or a single set of signatures if multi-signature). Suppose a total of
I interaction events occur followed by another rotation event. This rotation event may be signed
only by A1 as follows:

ε1+I = C, t1+I ,η ε I(), rot, A2, S1 σ
A1

(10.5)

Subsequent interaction events will be signed by S1 (or a set of signers if multi-signature) . For
example the next successive interaction event may be denoted as follows:

ε2+I = C, t2+I η ε1+I(),itc, data{ } σ
S1

. (10.6)

In general the l th rotation event appearing as the kth event with a single signature (single set of
signatures if multi-signature) may be denoted as follows:

ε k = C, tk ,η ε k−1(), rot, Al+1, Sl σ
Al

. (10.7)

This may be slightly more vulnerable to forgery than the KERI solo engine because only one
signature (set of signatures) is used. Nonetheless because A1 is only used once in the manage-
ment infra-structure it may be sufficient. Using more signatures would make this equivalent to
double rotation mode and hence provides no advantage to implementing this custom duet
engine.

While this example of a custom event set is clean and only requires one event per rotation
operation it still uses more keys that the the single rotation (repurposed key mode) for KERI al-
beit it uses the same number of keys as double rotation mode. Its main difference is that it only
uses one signature instead of two for each rotation. This has the advantage of less computation
and may be semantically easier to reason about or at least more familiar to reason about than the
solo engine but may have increased vulnerability to forgery (but maybe not significantly so). If
the only use case, however, is covered by this duet engine then it may be preferable. This de-
scription may be extended to multi-signature witnessed versions in a straightforward manner.

77/80

11 CONCLUSION

KERI is a decentralized key management infrastructure (DKMI) based on the principle of
minimally sufficient means. KERI is designed to be compatible with event streaming
applications but may be employed in distributed ledger systems as well. The event streaming
design lends itself to a simple state verification engine. The syntax is compact and efficient.
Nonetheless KERI has advanced key management features. The principle key management
operation is key rotation via a novel in-stride key pre-rotation scheme. This utilizes a single
sequence of controlling key-pairs for easier management. KERI provides for reconfigurable
thresholded multiple signature schemes where both the threshold and total number of signatures
may change at each rotation. KERI also provides for fractional weighted multiple signatures
schemes. The pre-rotation makes a forward commitment to unexposed key-pair(s) that provide
security that may not be undone via exploit of any exposed key-pairs. This allows for
reconfigurability without sacrificing security. KERI also provides for reconfigurable designation
of witnesses and quorum (tally) sizes where both the total number of witnesses and quorum size
may change from rotation to rotation. Once again the pre-rotation forward commitment to
unexposed key-pairs means that the witness configuration may not be undone via exploit of any
exposed key-pairs. KERI is the only event-streaming capable system that we know of that
provides this combination of advanced features.

A delegated version of KERI is also provided that enables hierarchical key management where a
master controller (identifier) key event stream may delegate signing authority to one or more
slave identifier key event streams thereby forming a chained tree of key event streams.

KERI scalable design supports multiple use cases. Two primary trust modalities motivated the
design, these are an online or pair-wise mode and an offline or any-wise mode. In the online
mode the identity controller establishes control via verified signatures of the controlling key-
pair. The offline mode extends that trust basis with witnessed key event receipt logs (KERL) for
validating events. This gives rise to the acronym KERI for key event receipt infrastructure. The
KERI approach may be much more performant and scalable than more complex approaches that
depend on a total ordering distributed consensus ledger. Nevertheless KERI may employ a
distributed consensus ledger when other considerations make it the best choice. In other words
KERI may be augmented with distributed consensus ledgers but does not require them. KERI is
applicable to DKMI in data streaming, web 3.0, and IoT applications where performance and
scalability are important. KERI is designed to support DIDs but its core services are identifier
independent (this includes DID method independence). This makes KERI a simple universal
portable DKMI.

AUTHOR

Samuel M. Smith Ph.D. is an expert in decentralized identity and reputations
systems. Samuel received a Ph.D. in Electrical and Computer Engineering from
Brigham Young University in 1991. He then spent 10 years at Florida Atlantic
University, eventually reaching full professor status. In addition to decentralized
identity and reputation, he has performed pioneering research in automated rea-
soning, machine learning, and autonomous vehicle systems. He has over 100 ref-

ereed publications in these areas and was principal investigator on numerous federally funded
research projects. Dr. Smith has been an active participant in open standards development for
networking protocols, and decentralized identity. He is also a serial entrepreneur.

12 REFERENCES

78/80

[1] Allen, C., “The Path to Self-Sovereign Identity,” Life With Alacrity, 2016/04/25
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html

[2] “Apache Flink,” Apache Software Foundation,
https://flink.apache.org

[3] “Apache Kafka,” Apache Software Foundation,
https://kafka.apache.org

[4] Arciszewski, S., “No Way, JOSE! Javascript Object Signing and Encryption is a Bad Standard That Everyone
Should Avoid,” Paragon Initiative, 2017/03/14
https://paragonie.com/blog/2017/03/jwt-json-web-tokens-is-bad-standard-that-everyone-should-avoid

[5] Aumasson, J.-P., “BLAKE2 — fast secure hashing,”
https://blake2.net

[6] Bernstein, D. J., “Ed25519: high-speed high-security signatures,”
https://ed25519.cr.yp.to

[7] Conway, S., Hughes, A., Ma, M. et al., “A DID for Everything,” Rebooting the Web of Trust RWOT 7,
2018/09/26
https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/A_DID_for_everything.pdf

[8] “ERC-1056 Lightweight Identity,” Ethereum Foundation EIP,
https://github.com/ethereum/EIPs/issues/1056

[9] “Ethr-DID Library,” uPort.me,
https://github.com/uport-project/ethr-did

[10] Fielding, R. and Reschke, J., “RFC-7320: Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and
Routing,” Internet Engineering Task Force (IETF), 2014/06/01
https://tools.ietf.org/html/rfc7230#section-3.2.1

[11] “ISO 8601,” Wikipedia,
https://en.wikipedia.org/wiki/ISO_8601

[12] “ISO 8601 and Nanosecond Precision Across Languages,” nbsoft solutions, 2016/06/14
https://nbsoftsolutions.com/blog/iso-8601-and-nanosecond-precision-across-languages

[13] Josefsson, S., “RFC-3548: The Base16, Base32, and Base64 Data Encodings,” IETF, 2006-10-01
https://tools.ietf.org/html/rfc4648

[14] Kaminsky, M. and Banks, E., “SFS-HTTP: Securing the Web with Self-Certifying URLs,” MIT, 1999
https://pdos.csail.mit.edu/~kaminsky/sfs-http.ps

[15] Mazieres, D. and Kaashoek, M. F., “Escaping the Evils of Centralized Control with self-certifying pathnames,”
MIT Laboratory for Computer Science, 2000
http://www.sigops.org/ew-history/1998/papers/mazieres.ps

[16] Mazieres, D., “Self-certifying File System,” MIT Ph.D. Dissertation, 2000/06/01
https://pdos.csail.mit.edu/~ericp/doc/sfs-thesis.ps

[17] “MultiSigWallet,” Gnosis,
https://github.com/gnosis/MultiSigWallet

[18] Smith, S. M., “Ioflo,”
https://github.com/ioflo/ioflo

[19] “self-sovereign-identity,” GitHub,
https://github.com/WebOfTrustInfo/self-sovereign-identity

[20] Smith, S. M. and Khovratovich, D., “Identity System Essentials,” 2016/03/29
https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/Identity-System-Essentials.pdf

[21] Smith, S. M., “Key Event Receipt Infrastructure (KERI) Design and Build,” 2019/07/03

79/80

https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/KERI_WP.pdf
[22] Smith, S. M., “Decentralized Autonomic Data (DAD) and the three R’s of Key Management,” Rebooting the

Web of Trust RWOT 6, Spring 2018
https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/DecentralizedAutonomicData.pdf

[23] Staff, P. I. E., “One Login To Rule them All - Seamless and Secure Cross-Domain Authentication,” Paragon
Initiative, 2016/02/22
https://paragonie.com/blog/2016/02/one-login-rule-them-all-seamless-and-secure-cross-domain-authentication

[24] Staff, P. I. E., “Split Tokens: Token-Based Authentication Protocols without Side-Channels,” Paragon Initiative,
2017/02/28
https://paragonie.com/blog/2017/02/split-tokens-token-based-authentication-protocols-without-side-channels

[25] W3C, “Decentralized Identifiers (DIDs),” W3C Draft Community Group Report,
https://w3c-ccg.github.io/did-spec/

[26] W3C, “A Primer for Decentralized Identifiers: An introduction to self-administered identifiers for curious
people,” W3C,
https://w3c-ccg.github.io/did-primer/

[27] Windley, P. J., “Soverign-Source Identity, Autonomy, and Learning,” Technometria, 2016/01/19
http://www.windley.com/archives/2016/01/soverign-source_identity_autonomy_and_learning.shtml

80/80

