

Massachusetts Green Team @ SC21

Boston Linux & Unix - April 21, 2021

Introduction to the Team - History

- Started in 2011, competed at SC11 and SC12
 - 2nd Place
- Called Team Chowdah
- Nvidia Tesla K10s
 - Cutting edge at the time!

Introduction to the Team - History

- Golden Days
- SC14, ASC15, ISC16, SC16, ASC16, SC17, SC18
- Various universities were represented each year
 - After 2018, everything just kinda stopped...

Episode VI: Return of the Massachusetts Green Team

Introduction to the Team

David Shen, Computer Science, BC'22

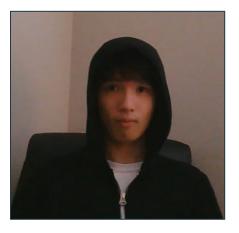
IO500 Filesystems


New Competitor

Carlton Knox, Computer Engineering, BU'23

Application - Cardioid

New Competitor



Richard Kumahia, Computer Engineering, UML'22

Application - Quantum Espresso

New Competitor

Introduction to the Team

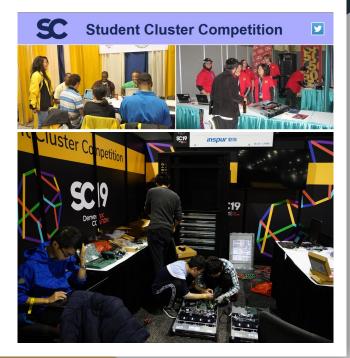
Howie Chen (Po Hao Chen), Computer Science, BU'23

Benchmarking Lead

Returning

Michael Klein, Computer Science, BU'24 Application - Quantum Espresso

New Competitor


Ben Li, Electrical & Computer Engineering, BU'22

Applications Lead

Returning

The Student Cluster Competition @ SC

- Multi-day event Early November
 - Part of the Supercomputing Conference
- International representation
 - 6 students per team, all undergraduate
 - o 16-18 teams
- Build a supercomputing cluster
 - 3 Benchmarks, 3-4 Applications, Reproducibility Challenge
 - Challenge Optimize workloads to achieve highest score
- Great opportunity for students to learn about HPC and network

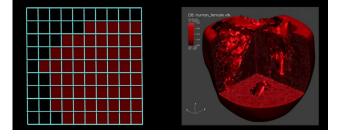
Summary of SC20 + What We Learned

- Worked with Microsoft Azure 0
 - AMD EPYC 2nd Gen (Rome), Nvidia V100
- Lots of benchmark testing with multiple VM SKUs, but couldn't run most applications 0

64.9 TFLOP/s

- HPL (High Performance LINPACK) 65 TFlops
- HPCG 593 GFlops
- 10500 0.7
- Mystery Application 6/6
- Scripts to get benchmarks setup -> more time for applications
 - Submit something for everything Ο
 - Better distribution of system resources to workloads 0

Ø	SS Dashboard 🕫						😡 🕘 Last 3 days 💷 👻 🔍 🗶 😂 🕶 -	
Q 88	Contest has ended!							
	Welcome to the Virtual Student Clu	ster Competition Live Da	ishboard			Tetal	Speed for All Teams	
	Currently Alaccade CPU Current 9306 cores	Competition is Livel Good Luckt Manufation	Thank you to cor sponteer: AZURE Currently Allocated Memory 62.0 TB	eunter au e	estly Allocated Virtual Machines 217 Virtual Machines	m 51411W	1.3к	
				Leaderboard				
							10500	
	Clemion University		0	2	6 32		0	
	ETH Zurich (Team RACKlette)	3	1	2	6 128		8.6	
	Friedrich-Alexander University Erlangen-Nuremberg	5	1	2	6 29.0		18	
	Beorgia institute of Technology	3	0	2	6 108		8.5	
	Massachusetts Institute of Technology (MT)		0	0	6 641	9 TRLOP/6 993 GRLOP/6	676	

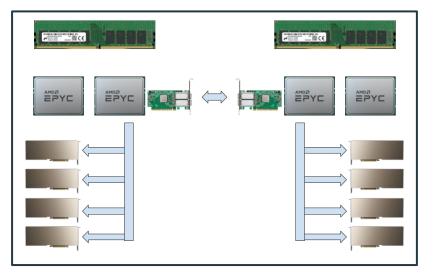

593 GFLOP/s

0.70

SC21 Info

- In-person competition
- Same benchmarks as previous year
 - LINPACK, HPCG, IO500 team has experience
- New applications
 - Cardioid
 - Quantum Espresso
- Variable power limit
 - o 2000W 4000W

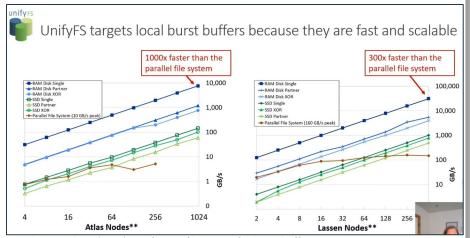
Heart Anatomy Stored on a Grid



https://github.com/LLNL/cardioid -"Cardiac multiscale simulation suite"

<u>https://www.quantum-espresso.org/</u> - "An integrated suite of Open-Source computer codes for electronic-structure calculations and materials modeling at the nanoscale."

Architecture Proposal

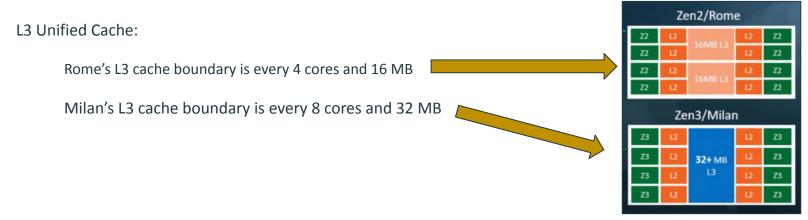

Hardware

- 2 nodes
 - 2x AMD EPYC Milan
 - 4x Nvidia A100
 - 32GB DDR4 ECC/socket 64GB/node
 - Infiniband
- Software
 - Distributed File System GekkoFS, UnifyFS
 - AMD Optimized C/C++ Compiler <-> Nvidia CUDA-X libraries
 - Provides optimized support for workload dependencies

Distributed File Systems

• Local Node Storage Burst Buffers

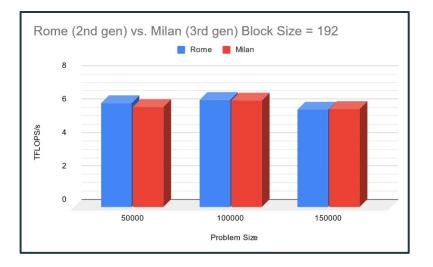
- Large increase in performance vs. parallel file systems
 - No contention!
 - Scales very well
- Not so good when files need to be shared or producer/consumer applications (CESM)
- GekkoFS, UnifyFS

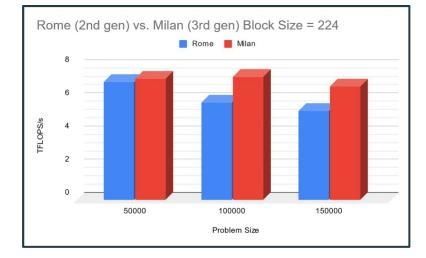

Kathryn Mohror (LLNL), UnifyFS: A filesystem for burst buffers

Nvidia A100

- Reigning champion for HPC applications
- In comparison with the V100...
 - Per core clock \downarrow core count \uparrow
 - More memory, higher memory bandwidth and memory clock speed
- Running HPL on GPU instead of CPU
 - Why didn't we do this last year?

AMD EPYC Milan


Up to 64 processor cores per socket, Improved CPU speed up to 3.7 GHz, and more



https://techcommunity.microsoft.com/t5/azure-compute/hpc-performance-and-scalability-results-with-azure-hbv3-vms/ba-p/2206471

https://www.microway.com/knowledge-center-articles/detailed-specifications-of-the-amd-epyc-milan-cpus/


Benchmarks!!!

5-node clusters, 120 cores/node, basic techniques, openmpi-4.0.5, P=24 Q=25

Benchmarks!!!

On the Azure VMs, Milan has half as many blocks, 2 times as many cores/boundary and 2 times as much L3 cache per boundary! This decreases the probability of cache misses significantly.

	_00 / (e	ps *	(11	x _00 *	be computed: A _oo + b aken to be	_oo) * N) 1.110223e-16
Computation	al tests p	ass	if sca	led residu	als are less than	16.0
/v	N	NB	====== P	Q	Time	Gflops
NR11C2R4 HPL_pdgesv()	200000 start time				534.09 2021	9.9859e+03
HPL_pdgesv()	end time	Fri	Apr	9 06:35:30	2021	
Ax-b oo/(eps*(A	00*	x	oo+ b o	o)*N)= 1.71190436e	-03 PASSE

5-node clusters, 120 cores/node, basic techniques, openmpi-4.0.5, P=24 Q=25

Benchmark - Just Numbers

Block Size	Problem Size	Rome	Milan
19	2 50000	6.23	6.01
19	2 100000	6.42	6.39
19	2 150000	5.85	5.86
Block Size		Rome	Milan
22	4 50000	7.1	7.33
22	4 100000	5.87	7.44
22	4 150000	5.37	6.86
Block Size		Rome	Milan
25	6 50000	6.32	6.39
25	6 100000	8.09	8.03
25	6 150000	9.11	9.55

5-node clusters, 120 cores/node, basic techniques, openmpi-4.0.5, P=24 Q=25

Acknowledgements

Microway

BU Ignite Council

Kurt Keville

SC21 Organization Team

MGHPCC