

ZFS and the Infinite Incremental
Backup

A brief description of ZFS and how to use
snapshots and clones for data backup and

recovery

Some Basic Storage Conventions
● Disks

– A Disk is a physical disk either spinning or solid state

● LUN
– Logical unit or block device
– Can be a disk
– Can be a SAN or managed aggregate device

● Pool
– A collection of disks managed by a “volume manager”

● Volume
– A unit of managed storage

● Volume Manager
– Manages multiple disks in a “pool” or “volume group”
– LVM
– ZFS
– BTRFS

Linux Volume Managers
● LVM – Logical Volume Manager

– Physical Volumes
– Volume Groups
– Logical Volumes

● ZFS – Zettabyte File System
– Zpools
– ZFS Objects (volumes)

● BTRFS – Better File System
– Removed from RedHat 8
– Similar in capability to ZFS

What is the Zettabyte File System?
● ZFS is both a file system and a volume manager.

– Takes physical disks and creates a “pool” of storage (like LVM VG)
– Top level of a pool is a file system (unlike LVM VG)
– Allocate objects out of the pool

● File systems
● Block devices
● Snapshots
● clones

ZFS Objects
● A ZFS object is internally represented as a Merkel tree

– https://en.wikipedia.org/wiki/Merkle_tree

● The Merkel tree points to blocks in the zpool
● ZFS is a “redirect-on-write” system.

– Blocks are replaced not updated
– Blocks may be shared across multiple objects
– Blocks have a reference count

● When count goes to zero, it is reused

File Systems
● A ZFS file system looks like a common Linux file system
● File systems are sparsely allocated out of the pool.
● They only use space as it is used.
● You can have many filesystems
● A filesystem can have a mount point, e.g. /home
● A ZFS file system is as large as the pool it is allocated out of

ZVOLS
● A ZVOL is a block device allocated out of a ZFS pool

– This is similar to an LVM logical volume

● A ZVOL is typically pre-allocated out of the pool
– Can be “sparse” with the -s flag at creation time

● Only allocates storage as used
● A sparse volume may be huge but use almost no storage

● A ZVOL has a fixed size
● A ZVOL can be used like any other Linux block device

– You can format them as EXT3, XFS, and even swap

Snapshots
● A snapshot is a read-only representation of a ZFS object

at a specific point in time
● Effectively a copy of an object’s Merkel tree

– Not really, but it works to think of it that way

● Can not be changed.
● Shares data blocks with object of which it is a snapshot
● An object may have many snapshots

clone
● A clone creates a usable volume from a snapshot
● Uses snapshot for initial contents
● Retains new blocks outside the snapshot

– A snapshot may have multiple clones

● A zfs object snapshot is used as the basis of a
new object using clone

Setup SSH on two systems
● Use ssh-keygen to create an RSA key on main

system
● Copy public key to root’s .ssh/authorized_keys on

the replication target
● Using ssh from origin system to root on the

replication target should proceed with no user
interaction

Create Source Pool and Object
● Devel file system

– zpool create -o ashift=12 zpool1 /dev/vdb
– mkdir /devel
– zfs create -o compression=lz4 zpool1/devel
– zfs set mountpoint=/devel zpool1/devel

● /devel is now a ZFS file system

Create Destination Pool
● Devel file system

– zpool create -o ashift=12 zpool1 /dev/vdb

Perform Initial Backup
● Create Snapshot

– zfs snapshot zpool1/devel@snap1

● Use send to send first copy
– zfs send zpool1/devel@snap1 | ssh demo2 "zfs

receive -F zpool1/devel"

Create Some Data

dd if=/dev/urandom bs=4096 count=20
of=/devel/data

Perform Next Backup
● Create snapshot

– zfs snapshot zpool1/devel@snap2

● Use “send” and ssh to send the changed blocks
– zfs send -i zpool1/devel@snap1 zpool1/devel@snap2 | ssh demo2 “zfs receive -F zpool1/devel”

● Sends only data changed since @snap1
● Snap1 and snap2 are compared and blocks that have changed will be sent. All others will be ignored
● The receiving object will be identical to the sending object.

● Destroy snap1 and rename snap2 to snap1
– zfs destroy zpool1/devel@snap1
– zfs rename zpool1/devel@snap2 zpool1/devel@snap1
– ssh demo2 ‘zfs destroy zpool1/devel@snap1’
– ssh demo2 ‘zfs rename zpool1/devel@snap2 zpool1/devel@snap1’

mailto:zpool1/devel@snap1
mailto:zpool1/devel@snap2
mailto:zpool1/devel@snap2
mailto:zpool1/devel@snap1
mailto:zpool1/devel@snap2
mailto:zpool1/devel@snap1

A simple script
#!/bin/bash

zfs snapshot zpool1/devel@snap2
zfs send -i zpool1/devel@snap1 zpool1/devel@snap2 | ssh demo2 'zfs receive -F zpool1/devel'

zfs destroy zpool1/devel@snap1
zfs rename zpool1/devel@snap2 zpool1/devel@snap1
ssh demo2 "zfs destroy zpool1/devel@snap1"
ssh demo2 "zfs rename zpool1/devel@snap2 zpool1/devel@snap1"

What if you don’t delete the
snapshots?

● ZFS snapshots are light weight and unlike LVM do not
duplicate data

● They only retain the old changed blocks.
● You can have thousands or tens of thousands of

snapshots
● There is little or no impact on performance for

snapshots

Are snapshots just for backup?
● Snapshots are an effective tool to “freeze” a volume

for backup
● Snapshots can be used for “clones”
● A clone is a read/write volume that uses the snapshot

for its original data
● As data is written to a clone, only the clone’s Merkel

tree is changed, leaving the snapshot unchanged

Example 1, accident recovery
● Have you ever deleted a file and immediately

cursed yourself, and dread re-writing the code?
● You could snapshot every 15 minutes and never

lose more than that (assuming you save)
● Use a clone with a snapshot and get your data back

– Or use zfs rollback to got back to the state of a snapshot

● No noticeable affect on performance

Example 2: Historical Archive
● A snapshot represents a point in time for a volume
● You can create a strategy for long term retention of data, just by using

snapshots
● Create snapshots for important dates

– Once a week
– Once a month
– Once a year
– Release dates
– Etc.

Example 3: Multiple Volumes that
Share Common Base

● Create one volume, take a snapshot and create
multiple clones

● The data on the base object is shared with the
clones via the snapshot

● Can save data
● Unfortunately, not updatable

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

