
Nix
This is a talk about the Nix package manager. Nix does a LOT of
different stuff, so this covers only the basics. I am by no means an
expert on Nix; I mainly signed up to do this talk so to provide myself
with motivation to learn the tool. I make no guarantees about the
accuracy of these notes. I wrote them so I would have reference
material during a talk. They might be wrong.

System package managers
• apt
• brew
• dnf
• zypper
• pacman

Why do we use them?
• Convenience

– It’s cool to be able to run a single command to update
all my software at once.

– Anyone who’s ever tried to do Linux From Scratch has
stories of “dependency hell.” Sometimes, things need to
be built in just the right order and with just the right set
of tools. It’s nice that the package manager handles that
for me.

• Security
– Presumably, my distribution’s packagers aren’t putting

malware in the repositories. (Unfortunately, this isn’t
always true.)

– The package manager checks hashes and only retrieves
software from trusted repositories, so it’s harder to phish
me.

• Cool
– Some of them look pretty slick.
– {Picture of pacman in ILoveCandy mode}

When don’t we use them?
• When we want software that’s weird.
• When we want software that’s old.

– Old software may expect old libraries. If the library has
changed (looking at you, glibc) then your old programs
may not build or run.

∗ I just ran into this recently with the QEMU sub-
module in AFL. QEMU includes some headers from
glibc that once contained no name conflicts, but do
in more recent versions of glibc. Arch packages a
recent glibc, so AFL’s build system can’t figure out
how to get QEMU to compile. As a hack workaround,

I just edited my system’s glibc header files. QEMU
built, and then I changed them back. No one should
ever have to do that.

• When we want software that’s proprietary.
– Proprietary programs that use dynamic linking may re-

quire libraries that conflict with preexisting libraries on
your system.

∗ When this happens, you have no option but to patch
the binary to use the API that your system supports.

• When we want software written in a programming language
with a dependency culture.
– For programs written in these languages, it’s normal to

pull in a million dependencies even for things that would
be easy to implement.

∗ Remember left-pad?
– These languages provide their own package managers,

which usually are a little sloppier than the one that comes

with your system, and often pull packages from community
repositories that are full of typo-squatting malware.

∗ pip and npm are the big offenders here.
– venv is a super clunky solution to this problem.

• When we need to use software in a way that works on someone
else’s computer.
– When push comes to shove, people choose Docker.

∗ Docker is often misused. While you can use
lightweight containers with Alpine, many Docker
containers just use Ubuntu, so you end up running 10
instances of Ubuntu simultaneously. This is slow on
my little ThinkPad T420, and uses a lot of memory.

∗ You need to configure device and network
passthrough, and ensure that containers stay
up to date on security patches.

∗ Effectively, Docker adds another package manager to
your system.

Nix
What is Nix?

• The Nix package manager (The focus of today’s talk)
– A package manager that solves some of the problems

listed above.
• NixOS

– A Linux distribution that uses the Nix package manager
as its system package manager.

– Allows the system to be configured reproducibly and
declaratively.

∗ i.e. you install GRUB with a few lines in a config
file instead of having to run grub-mkconfig and
grub-install.

– You can also manage your system config with tools like
home-manager.

• The Nix language
– A functional programming language in which Nix pack-

ages are specified.

Using the Nix package manager
Setup

• You may be able to install Nix with your system’s package
manager. Otherwise, the Nix website recommends that you
curl a script directly into your shell. This is usually kind of a
bad idea for security, but it’s your computer!

• Add yourself to the nix-users group.
• Enable the Nix daemon. This is available as a systemd service,

but they have services available for other init systems as well.
• Add a Nix channel

– This is like a version of the package repositories.
– Because Nix supports many channels concurrently, you

can install older versions of software alongside newer ver-
sions.

∗ You can think of this like being able to enable the
Ubuntu 12.04 repositories on Ubuntu 22.04.

– I recommend enabling the nixpkgs-unstable channel.
∗ nix-channel --add https://nixos.org/channels/nixpkgs-unstable

&& nix-channel --update
• Log out and log back in.

– This will add the appropriate things to your path.

Regular package management

• You can run nix-env to use Nix like a normal package man-
ager.
– To install a package, use nix-env --install

$SOME_PACKAGE.
∗ May also want to consider nix-env --install -A

nixpkgs.$SOME_PACKAGE
– To uninstall a package, use nix-env --uninstall

$SOME_PACKAGE.
– To list all your installed packages, use nix-env --query.
– To search for a package, use nix-env -qaP

$SOME_PACKAGE

Generations

• Now we actually get to something interesting.
• Every time you install or uninstall a Nix package, Nix creates

a new generation.
• A generation encompasses the state of the packages on your

machine.
• Use nix-env --list-generations to list all your Nix gen-

erations.
• If you install some software, and then things start to behave

strangely, you can roll back to your previous generation with
nix-env --rollback

• If you need to go further back (or forward), you can switch
generations directly with nix-env --switch-generation
$GENERATION_NUMBER

Using multiple channels at once
• nix-channel --add https://nixos.org/channels/nixos-15.09

nixpkgs1509 (for example)
• Now you can nix-env -iA nixpkgs1509.wget to get an

old version of wget.

nix-shell

• Do the demo with python2
• Sometimes, you just want to use a package for a little while,

and then forget about.
• Enter nix-shell:

– nix-shell --packages bash sticks you in a shell with
the version of bash from your default nixpkgs repository.

– You can also specify a particular version of nixpkgs with
the -I flags.

– This means I can send you a script that uses nix-shell,
and be certain that when you run the script on your com-
puter, it has exactly the same packages and configuration
as when I run it on my computer.

How does all of this work?
• It’s really complicated.
• The basics work like this:

– When you install a package, Nix stores it in the Nix store,
which is usually in /nix/store.

– When your current generation would mean that you
should have access to a particular package, Nix will
symlink .nix-profile/bin/wget (for example) to the
home of the appropriate version of wget in the Nix store.

∗ Onmy system, that’s /nix/store/xw310xnhscrgk551d9kazr109biyj48x-wget-1.21.3/bin/wget
– The reason that the names in the Nix store are filled

with junk is that every package’s name in the Nix store
is prefixed with the hash of that package’s dependency
graph.

∗ This way, even if package maintainers have a bizarre
versioning scheme that doesn’t change when the de-
pendencies change, the Nix package manager can
still distinguish different versions of the same package
effectively.

• Sandboxing
– By default, packages built for Nix are built in a sandboxed

environment such that as little as possible of the host

system works its way into the package.
– This also means that builds are reproducible.
– Since the packages are specified in a purely functional

language, the build scripts can’t do weird things that
cause the same build to make different results on different
systems

∗ This has the unfortunate side effect of making main-
taining packages difficult
· But this hasn’t stopped people! There are over

80,000 Nix packages, and that number is rapidly
increasing.

Solving dependency culture
• Nix also packages lots and lots of Python packages, so you

don’t have to use pip!

Garbage collection
• As you might expect, Nix sticks a lot of stuff in the Nix store,

just like your system package manager keeps a lot of stuff in
its package cache.

• If your Nix store gets too full, use nix-collect-garbage to
clear it out.

No sudo needed?
• Nope!

Other frontends
GNU Guix

/usr/lib/xdg-desktop-portal –verbose -r /usr/lib/xdg-desktop-portal-
wlr -l DEBUG

	Nix
	System package managers
	Why do we use them?
	When don't we use them?

	Nix
	What is Nix?
	Using the Nix package manager
	Setup
	Regular package management
	Generations

	Using multiple channels at once
	nix-shell
	How does all of this work?
	Solving dependency culture
	Garbage collection
	No sudo needed?
	Other frontends

