Home Router/Firewall using OPNsense

 My totally overkill home networkShankar Viswanathan

Dec 2022

Outline

- Motivation for new home network
- SW \& HW choices
- OPNsense basics
- Router \& Network setup
- Power/performance
- Demo

What I had ...

- Typical consumer router running OpenWRT in the basement
- Coax between basement and first floor - MoCa adapter at each end
- First floor MoCa adapter had built-in Wifi AP
- And Blinkenlights

It worked, but

- Wifi performance was poor in some rooms
- Chicken wire in a few walls
- Latency was bad with multiple video calls in parallel
- Could never saturate 400/20 Mbps connection from ISP (over WiFi)

So

BLU, Dec 2022

- Cat6A cabling installed
- 10Gbps capable over distances < 100m

But what router?

1. Standard consumer router with OpenWRT

Or
2. DIY with a router-focused OS

Winner - option \#2

- Less hassle - don't need to deal with vendor locking firmware
- No weirdness with flash size or revision number within router model
- More flexibility overall

Router OS Criteria

- Secure
- Stable
- Regular updates
- Flexible, ease of use
- FLOSS w/ reasonably active community

OS feature requirements

- Full featured stateful firewall
- DHCP server
- VLAN support
- Wireguard VPN support
- Optional: DNS filtering/blacklisting
- Optional: Traffic shaping / QoS

OS choices

- PFsense
- OPNsense
- OpenWRT
- IPFire
- Untangle

OPNsense

- Based on FreeBSD
- Fork of Pfsense
- Itself a fork of m0n0wall
- Founded and since maintained by Deciso A.B.
- Continuously updated since its start in 2015-2 major updates each year

- Easy to use Ul
- Fantastic documentation

OPNsense: Major features

Feature
Stateful Firewall
DNS and DHCP servers, dynamic DNS
Two-Factor Authentication
802.1Q VLAN support

Link Aggregation \& Failover
Traffic Shaping
Built-in reporting and monitoring tools
Intrusion Detection \& Prevention
Virus scanner
VPN Services (IPsec, OpenVPN, WireGuard)
Support for plugins

OPNsense installation

- Install images available for amd64 architecture only
- Can be installed from USB or flash with a display or via serial
- As with FreeBSD, finding drivers can be tricky for certain devices Intel NICs are generally the best supported
- A "nano" image is available for embedded devices: all writes go to ramdisk, logs do not persist upon reboots
- ZFS is the recommended filesystem for standard installs
- Can install on baremetal or in a VM (VMWare, Xen, KVM etc)
- After installation, configuration can be done via console, web GUI or via ssh (ssh disabled by default)

Recommended HW

- > 1.5GHz multi-core CPU
- 4GB RAM
- Serial console or video (VGA) for installation
- > 120GB storage for OS \& logs
- >= 2 NIC ports
- Single NIC workable with a VLAN capable switch, so called "Router on a stick"

First idea

- Get a PC Engines APU2 board + enclosure kit
- Load OPNsense
- Estimated cost: ~\$225
- Unobtanium :-(

Another option

- Various low power router boxes from Amazon, Aliexpress
- Deciso, Netgate, Protectli, Qotom, etc.
- 4 to 6 GbE ports
- Some come with PFSense/OPNSense preloaded
- Power draw: 15 to 35W
- Price range: \$300 to \$700

Go down r/OPNsense rabbit hole ...

- Used slim PC or thin client with open PCle slot
- Add 4-port GbE NIC
- Add larger disk or use USB storage
- Power: ~30W
- Estimated cost: ~\$200

Get crazy deep into r/homelab

Why not get a rackmount server with a bunch of ethernet ports?

Found this on Ebay: Kemp LM3400

8GbE ports, 2 USB2, Cisco-style serial

20

VGA, 2 more USB2s, power

A look inside

(1) ©

4-core SandyBridge Xeon, 8GB DDR3

And I paid ...

\$53.11
(incl. tax \& shipping, sans disk)

Setup

- OPNsense installed without a hitch
- All 8 GbE ports got recognized (em0 - em7)
- Configured WAN, link aggregrated 2 ports to main switch for LAN
- Setup VLANs and mapped to Wifi SSIDs:
- Internal (NAS, desktop)
- Devices (phones, printer, streaming devices)
- Guest
- Configured Wireguard for remote access

Network topology

- Two links between router and switch form a LAN LAG
- VLANs go over the LAG
- Managed switch has PoE+ ports to power WiFi APs
- One ceiling-mounted AP in each floor, staggered placement

 acmamememamamemememamemem

2. Boot Single user
3. Escape to loader prompt
4. Reboot
5. Cons: Video

Options:
6. Kernel: default/kernel (1 of 1)
7. Boot Options

Autoboot in 1 seconds. [Space] to pause
oceer cemea amameman

cemea

 ロacememom /1/1/1 c(c)c(c)c(c) ememeromer eemea ereer

22.7 ''Powerful Panther'. I

AS A PROJECT WEARS ON, STANDARDS FOR SUCCESS SLIP LOWER AND LOWER.

6 HOURS

I'LL BE HAPPY IF I CANGET THE SYSTEM WORKING LIKE IT WAS WHEN I STARTED.

B) Logout

1) Assign interfaces
2) Set interface IP address
3) Reset the root passuord
4) Reset to factory defaults
5) Pouer off system
6) Reboot system

Enter an option:
7) Ping host
8) Shell
9) pfTop
10) Firewall log
11) Reload all services
12) Update from console
13) Restore a backup
*** OPNsense. localdomain: OPNsense 22.7 (amd64/0penSSL) ***
LAN (vtnet日) $\quad->$ v4: 192.168.200.1/24
WAN (vtnet1) $->$ v4/DHCP4: 172.30.30.168/24
HTTPS: SHA256 29 1D E8 30 BD 32 FB 5F EE 3B 7D AE 1660 CA E6 9B 41 1B DF A0 C6 DE 4D 88 D6 99 BB 5D A2 FE C6

Performance: iperf3 simultaeneous

Connecting to host 172.16.2.25, port 52201
[5] local 172.16.3.18 port 47572 connected to 172.16 .2 .25 port 52201

[ID]	Interval		Transfer	Bitrate	Retr	
[5]	0.00-10.00	sec	1.08 GBytes	932 Mbits/sec	2	sender
[5]	0.00-10.01	sec	1.08 GBytes	929 Mbits/sec		receiver

Connecting to host 172.16.3.18, port 5201

[ID]	Interval		Tran	fer	Bitr	ate	Retr	Cwnd	
[5]	0.00-1.00	sec	113	MBytes	949	Mbits/sec	0	430	KBytes
[5]	1.00-2.00	sec	112	MBytes	940	Mbits/sec	0	648	KByt
$\left[\begin{array}{ll}{[5]}\end{array}\right.$	2.00-3.00	sec	111	MBytes	933	Mbits/sec	0	717	KByt
[5]	3.00-4.00	sec	111	MBytes	933	Mbits/sec	0	717	KBy
[5]	4.00-5.00	sec	111	MBytes	932	Mbits/sec	0	749	KBy
[5]	5.00-6.00	sec	110	MBytes	924	Mbits/sec	0	785	KByt
[5]	6.00-7.00	sec	111	MBytes	933	Mbits/sec	0	830	KByt
[5]	7.00-8.00	sec	111	MBytes	933	Mbits/sec	0	830	KBytes
[5]	8.00-9.00	sec	111	MBytes	933	Mbits/sec	0	830	KBytes
[5]	9.00-10.00	sec	110	MBytes	923	Mbits/sec	0	830	KByte

[ID] Interval		Transfer	Bitrate	Retr	
$\left[\begin{array}{cc}{[}\end{array}\right]$	$0.00-10.00$	sec	1.09 GBytes	$933 \mathrm{Mbits} / \mathrm{sec}$	0

Speedtest: Wired \& WiFi

(4) DOWNLOAD Mbps 429.20
(1) UPLOAD Mbps
$23.9\}$
Ping ms
(5) 12
(4) 31
(1) 21

Connections

Multi
(ఉ)
Axcelx Technologies
Boston, MA
Change Server
(4) DOWNLOAD Mbps 39795
(1) UPLOAD Mbps 23.36
Ping ms
(-) 12
(4) 33
(ㄱ) 22

Connections
Multi
HOW DOES THE CUSTOI
COMPARE WITH YOU
(ఉ)
Axcelx Technologies
Boston, MA
Change Server

Wired

WiFi

WiFi test done in same room as AP

Power

- Measurements using Kill-a-Watt showed modem+router+switch consuming 89W on average over a 48 hour period
- Includes PoE supplied to the 2 APs
- Router alone averaged ~65W
- With some tweaks to CPU power management settings in OPNsense, total average power came down to 77W
- Fixed CPU frequency to 1600 MHz (was adaptive earlier)
- Enabled CPUs to go down to ACPI C3 state
dev.cpu.0.freq_levels: 3101/95000 3100/95000 3000/90163 2900/86347 2800/82600 2700/78924 $2600 / 744192500 / 70905$ 2300/64048 2200/59864 2100/56612 2000/53437 1900/50315 1800/47257 1700/43458 1600/40536
dev.cpu.0.freq: 1600
dev.cpu.0.cx_supported: C1/1/1 C2/2/80 C3/3/104
dev.cpu.0.cx_lowest: C3

Demo time

