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Abstract—Two main classes of optical TEMPEST attacks
against the confidentiality of information processed/delivered by
devices have been demonstrated in the past two decades; the first
class includes methods for recovering content from monitors, and
the second class includes methods for recovering keystrokes from
physical and virtual keyboards. In this paper, we identify a new
class of optical TEMPEST attacks: recovering sound by analyzing
optical emanations from a device’s power indicator LED. We
analyze the response of the power indicator LED of various
devices to sound and show that there is an optical correlation
between the sound that is played by connected speakers and the
intensity of their power indicator LED due to the facts that: (1)
the power indicator LED of various devices is connected directly
to the power line, (2) the intensity of a device’s power indicator
LED is correlative to the power consumption, and (3) many
devices lack a dedicated means of countering this phenomenon.
Based on our findings, we present the Glowworm attack, an
optical TEMPEST attack that can be used by eavesdroppers
to recover sound by analyzing optical measurements obtained
via an electro-optical sensor directed at the power indicator
LED of various devices (e.g., speakers, USB hub splitters, and
microcontrollers). We propose an optical-audio transformation
(OAT) to recover sound in which we isolate the speech from
optical measurements obtained by directing an electro-optical
sensor at a device’s power indicator LED Finally, we test the
performance of the Glowworm attack in various experimental
setups and show that an eavesdropper can apply the attack
to recover speech from speakers’ power LED indicator with
good intelligibility from a distance of 15 meters and with fair
intelligibility from 35 meters.

I. INTRODUCTION

Optical TEMPEST attacks [1], which are methods aimed
at recovering information from systems through optical side
effects, pose a great risk to privacy. In the past two decades,
various studies have demonstrated novel techniques for recov-
ering/extracting information from victim devices using optical
sensors by exploiting the correlation between the optical side
effects of the information and the device that is used to
deliver/process the information. In this context, two main
classes of attacks were introduced; the first class includes
methods for recovering content from monitors [2–4]. The
second class includes methods for recovering keystrokes from
physical and virtual keyboards [5–11]. In these studies, optical
data that was obtained directly from the victim device’s optical
emanations (e.g., [2]) or indirectly from reflections of the
victim device’s optical emanations on nearby objects (e.g.,
[3, 4]) was used to recover the desired information from a

victim device. These studies have contributed to improved
understanding regarding the risks posed by optical TEMPEST
attacks.

In this paper, we identify a new class of optical TEMPEST
attacks: sound recovery by analyzing optical emanations ob-
tained from a device’s power indicator LED. We show that
the power indicator LED of various devices leaks information
regarding the sound played by connected speakers. This occurs
in devices whose power indicator LED is connected directly to
the device’s power line and lack integrated voltage stabilizers.
As a result, the optical response (intensity) of the power
indicator LED of such devices is correlative to the power
consumed by the device. This fact can be exploited to recover
sound from the connected speakers directly, by obtaining
optical measurements via an electro-optical sensor directed at
the speakers’ power indicator LED, or indirectly, by obtaining
optical measurements via an electro-optical sensor directed at
the power indicator LED of the device used to supply power
to the speakers (e.g., USB hub, microcontrollers).

Previous studies have discussed the risks a device’s power
indicator LED can pose to the information delivered/processed
by the device due to the linear response of the power indicator
LED [12, 13]. This fact was exploited in some studies to
establish covert channels by using a preinstalled malware that
modulated the data via a device’s power indicator LED [14–
16], however no prior work was able to demonstrate end-
to-end sound recovery from a commercial device’s power
indicator LED without the use of malware. Other studies [17–
20] presented optical methods for recovering sound by turning
nearby objects into diaphragms (e.g., a hanging light bulb
[17], bag of chips [18], trash can [19], glass window [20]).
In these studies, sound was recovered by obtaining optical
measurements from vibrating objects (objects vibrate when
sound waves hit their surface). However, each of these methods
[17–20] suffer from one or more of the following limitations:
(1) they are limited in range (the nearby vibrating object must
be within five centimeters of the sound source [17, 18]), (2)
their application can be detected by an optical sensor (because
they require the eavesdropper to direct a laser beam into
the victim’s room [19]), (3) they require the eavesdropper to
compromise a device with malware (to stop the LiDAR from
turning so it can target a specific point or to exifltrate the col-
lected data via the Internet [19]). In addition, all of the methods
target the optical changes resulting from minuscule vibrations
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of nearby objects that were affected by sound hitting their
surface. We consider these methods to be optical side-channel
attacks rather than optical TEMPEST attacks, because they do
not target the optical correlation between the information and
the device used to deliver/process the information. A recent
paper presented a state-of-the-art sound recovery method [21]
using an EMR (electromagnetic radiation) TEMPEST attack
against devices that contain an MSOC (mixed-signal system-
on-chip) with an integrated switching regulator from a distance
of 15 meters, however, to the best of our knowledge, no study
has proposed a method capable of recovering sound from a
device at distances greater than 15 meters using a TEMPEST
attack.

In this paper, we present the Glowworm attack, an optical
TEMPEST attack aimed at recovering sound played by com-
mercial speakers. First, we analyze speakers and show that the
intensity of their power indicator LED is affected by played
audio. Then, we analyze various devices (USB hub splitter,
micro-controller) used to supply power for the speakers and
show that the intensity of the devices’ power indicator LED
is also affected by audio played by the speakers. Then, we
suggest an optical-audio transformation (OAT) to isolate the
sound from the optical signal obtained via an electro-optical
sensor directed at the power indicator LED of the devices.
Finally, we examine the performance of the Glowworm attack
in various experimental setups. We show that it can be used by
an eavesdropper to recover speech from virtual meetings by
obtaining optical measurements directly from the power LED
indicator of speakers with good intelligibility from a distance
of 15 meters and with fair intelligibility from 35 meters.

In this paper, we make the following contributions: (1) We
reveal a new class of optical TEMPEST attack that violates
the confidentiality of the information processed/delivered by
devices; the attack should be addressed by hardware man-
ufacturers and considered by consumers. (2) We show that
optical TEMPEST attack can recover sound from a device at
greater distances (35 meters) than an existing SOTA method
that used an EMR (Electro-Magnetic Radiation) TEMPEST
attack (whose range was limited to 15 meters) [21]. (3) We
propose a new method for recovering speech that is external
(obtains data without compromising a device in the target
room), passive (does not rely on an active sensor), and does
not depend on the distance between a sound source and a
nearby object.

The remainder of the paper is structured as follows: In
Section II, we review related work. In Section III, we present
the threat model. In Section IV, we analyze the response of a
device’s power indicator LED to sound played by speakers.
In Section V, we present an optical audio transformation
(OAT) for recovering sound, and in Section VI, we evaluate
Glowworm’s performance on the task of recovering sound.
In Section VII, we discuss potential improvements that can
be made to optimize the quality of the sound recovered by
an eavesdropper. In Section VIII, we suggest countermea-
sure methods that can be applied to prevent the proposed
Glowworm attack. In Section IX, we present the responsible
disclosure we made. In Section X, we discuss the limitations
of the attack and mention future work directions.

II. RELATED WORK

In this section, we review related work in the area of optical
data leakage and sound eavesdropping. TEMPEST attacks
have attracted the interest of many researchers since Van Eck’s
paper was published in the mid-1980s [22]. The last three
and a half decades have seen the development of various
methods for extracting information from devices by exploiting
the correlation between the information delivered/processed
by a device and its: EMR emanations (e.g., [21, 23–28]),
acoustic emanations (e.g., [29–36]), vibrations (e.g., [37–
42]), and power consumption (e.g., [43–45]). In the past two
decades, two main classes of optical TEMPEST attacks were
introduced; the first class includes methods for recovering
content from monitors [2–4], and the second class includes
methods for recovering keystrokes from physical and virtual
keyboards [5–11]. In these studies, optical data that was
obtained directly from the victim device’s optical emanations
(e.g., [2]) or indirectly from reflections of the victim device’s
optical emanations on nearby objects (e.g., [3, 4]) was used
to recover the desired information from a victim device.

The risks posed by a device’s power indicator LED were
discussed by [12, 13]. However, prior research demonstrating
methods capable of exploiting a device’s power indicator LED
for data exifltration relied on preinstalled malware to establish
optical covert channels [14–16]. The proposed methods leak
data from devices that are connected to air-gapped networks by
using preinstalled malware that modulated data optically via
the integrated LED of a device (e.g., a keyboard [16], router
[15], hard drive [14]).

Recent studies have investigated sound eavesdropping [37–
40, 46–48], suggesting various methods for recovering sound
by analyzing the side effects of sound waves that caused
nearby lightweight objects (e.g., a bag of chips, a window)
and devices (e.g., motion sensors) to vibrate (turning such
objects/devices to diaphragms). In this context, malware was
used to recover sound by: (1) obtaining data from a device’s
motion sensors [37–40], (2) reprogramming a computer’s
audio port from output to input [47], (3) inverting the process
of a vibration motor [46], and (4) analyzing magnetic data
obtained from a hard disk head [48]. These methods pose a
serious threat to privacy, but they require the eavesdropper to
compromise a device (with malware) located near the victim
(sound source) in order to obtain data and exfiltrate it to the
eavesdropper.

Optical methods for sound recovery were introduced by
[17–20]. A recent study demonstrated a method capable of
classifying words from a precollected dictionary, by analyzing
the vibrations of a trash can using optical data obtained via
a robotic vacuum cleaner’s LiDAR. This method requires the
eavesdropper to compromise the robotic vacuum cleaner in
order to: (1) prevent the LiDAR from turning and fix the
LiDAR on a specific object to increase the amount of data
collected from the vibrating object (because the frequency of
a robotic vacuum cleaner’s 360◦ LiDAR is limited to 7 Hz),
and (2) exfiltrate the data from the robotic vacuum cleaner.
Three studies [17, 18, 20] presented external optical methods
to recover sound that rely on data obtained via optical sensors,
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Fig. 1. Glowworm’s threat model: The sound snd(t) of the virtual meeting (1) which is played by the connected speakers creates changes in the power
consumption of the power indicator LED of a (2) connected peripheral (e.g., the speakers themselves, a USB hub splitter). The eavesdropper directs an
electro-optical sensor at the power indicator LED of a connected peripheral using a telescope (3). The optical signal opt(t) is sampled from the electro-optical
sensor via an ADC (4) and processed, using an algorithm to recover the acoustic signal snd∗(t) (5).

without the use of malware. The laser microphone [20, 20] is a
well-known method that recovers sound using an external laser
transceiver in which a laser beam is directed through a window
into a target room; the laser beam is reflected off an object and
returned to the transceiver which then converts the beam to an
audio signal. The visual microphone [18] recovers sound by
analyzing the vibrations of material inside the victim’s room
(e.g., a bag of chips, water) using video obtained from a high-
speed video camera (2200 FPS) to recover speech. Lamphone
[17] recovers sound using a remote electro-optical sensor by
exploiting the vibrations of a hanging light bulb; the vibrations
cause optical changes due to the non-uniform intensity of light-
ing, which varies at each angle. These methods [17, 18, 20]
pose a great privacy threat, however from an eavesdropper’s
perspective, they are limited in one of the following ways: they
rely on (1) a very high sound level (over 100 dB) which is
beyond the sound level of speech and meetings (e.g., [17, 18]),
(2) active sensors that use a laser beam (e.g., [20]), a fact
that increases the likelihood of detection (compared to passive
sensors), (3) hanging light bulbs, which are not commonly
used in office settings today (e.g., Lamphone [17]), or (4)
specialized equipment for spying [20], a fact that may limit
their availability in some countries (limiting the sale of such
equipment to, e.g., police departments).

III. THREAT MODEL

In this section, we describe the threat model and explain
its significance with respect to other methods. The Glowworm
attack targets the speech of participants in virtual meeting plat-
forms (e.g., Zoom, Google Meet, Skype, Microsoft Teams).
During the COVID-19 pandemic, these platforms became a
popular way for people to meet and share information; per-
sonal and valuable information is routinely exchanged when
these platforms are used for personal and business meetings.

We assume that an individual is located inside a room or
office and using his/her computer to conduct a virtual meeting
with another person (or a group) using a virtual meeting
platform. The purpose of the conversation can vary, for ex-
ample, the individuals may want to discuss business (e.g.,
sharing something with a client or colleague) or something
of a personal nature (e.g., talking about medical test results
with a doctor).

We consider an eavesdropper that is a malicious entity
interested in recovering speech from meetings and using the
valuable information discussed in the meeting for a malicious

purpose that may include spying on individuals (e.g., to obtain
sensitive information that can be used for blackmail) or spying
on an organizations (e.g., to obtain a company’s IP and
use it to give a competitor an advantage). We assume the
eavesdropper is located within 35 meters of the target room.
The eavesdropper can be: (1) a person located in a room in an
adjacent building, (2) a person in a nearby car. We consider
this threat as highly probable in the COVID-19 era due to
the number of personal and business meetings being held in
unsecured settings, including home offices.

In order to recover the sound in this scenario, the eaves-
dropper performs the Glowworm attack. We assume that the
a power indicator LED of a vulnerable device is visible from
outside the room/office. We consider two types of attacks: (1)
a direct attack, where the eavesdropper recovers sound from
the power indicator LED of the speakers, and (2) an indirect
attack, where the eavesdropper recovers sound from the power
indicator LED of the device used to provide the power to the
speakers (e.g., a connected USB hub, a microcontroller). Note
that the Glowworm attack can be applied by eavesdroppers
to recover: (1) the speech of any person speaking to the
victim during a virtual meeting, and (2) any sound (e.g., music
from YouTube, videos from the Internet) that is played by the
speakers during the virtual meeting, which may or may not be
related to the meeting; in this paper, we present the attack in
the context of recovering speech from a virtual meeting.

The main components used to perform the Glowworm attack
are: (1) A telescope - This piece of equipment is used to focus
the field of view on a device’s power indicator LED from a
distance. (2) An electro-optical sensor - This sensor is mounted
on the telescope and consists of a photodiode that converts
light into an electrical current; the current is generated when
photons are absorbed in the photodiode. (3) A sound recovery
system - This system receives an optical signal as input and
outputs the recovered acoustic signal. The eavesdropper can
implement such a system with: (a) dedicated hardware (e.g.,
using capacitors, resistors), or (b) the use of ADC to sample
the electro-optical sensor and process the data using a sound
recovery algorithm running on a laptop. In this study, we use
the latter digital approach.

Fig. 1 outlines the threat model: The sound snd(t) played
by the speakers in the victim’s room results in changes in the
power consumption due to the direct connection of the power
indicator LED to the input power line and the device’s lack
of voltage stabilizers. These changes in power consumption
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Fig. 2. Left: Four of the devices examined in the experiments described in Section IV. Center: A Thorlabs PDA100A2 electro-optical sensor (boxed in red)
is directed at the power indicator LED of a USB hub splitter (boxed in yellow). Right: The USB adapter is connected to the (1) speakers, (2) power socket,
and (3) ADC via a BNC cable which is used to measure the power consumed by the USB hub splitter.

influence the intensity of the light produced by the device’s
power indicator LED, resulting in a pattern of changes over
time that the eavesdropper measures with an optical sensor
which is directed at a device’s power indicator LED via a
telescope. The analog output of the electro-optical sensor is
sampled by the ADC to a digital optical signal opt(t). The
eavesdropper then processes the optical signal opt(t), using an
optical-audio transformation, to an acoustic signal snd∗(t).

In order to keep the digital processing as light as possi-
ble in terms of computation, we sample the electro-optical
sensor with the ADC set at the minimal sampling frequency
allowing comprehensible audio recovery; Glowworm is aimed
at recovering speech, and this requires a sufficient sampling
frequency rate. The spectrum of speech covers quite a wide
portion of the audible frequency spectrum. Speech consists of
vowel and consonant sounds; the vowel sounds and the cavities
that contribute to the formation of the different vowels range
from 85 to 180 Hz for a typical adult male and from 165 to
255 Hz for a typical adult female. In terms of frequency, the
consonant sounds are above 500 Hz (more specifically, in the
2-4 KHz frequency range) [49]. As a result, a telephone system
samples an audio signal at 8 KHz. However, many studies
have shown that an even lower sampling rate is sufficient for
recovering comprehensible sound (e.g., 2200 Hz for the visual
microphone [18]). In this study, we sample the electro-optical
sensor at a sampling rate of 4/8 KHz.

The significance of Glowworm’s threat model with respect
to related work is that Glowworm is:

(1) Not dependent on the distance between a sound source
and a nearby object: Glowworm analyzes the intensity of a
device’s power indicator LED, which is affected by a device’s
power consumption. As a result, the attack is not limited based
on the required distance between a sound source and a nearby
lightweight object (diaphragm) that vibrates in response to
sound (as opposed to other sound recovery methods that
are limited in that there can be no more than one meter
between the sound source and a vibrating object [17–20, 37–
40, 46, 48, 50, 51]).

(2) External: Glowworm does not rely on compromising a
device to obtain the data needed to recover sound (as opposed
to other sound recovery methods that require eavesdroppers to
compromise a device with malware first [37–39, 46–48]).

(3) Passive and relies on a benign sensor: The method relies
on a passive electro-optical sensor that is not considered spying
equipment and gives no indication regarding its application (as

opposed to the laser microphone [20] in which a laser beam
is directed at a glass window).

(4) Capable of recovering speech without the need to com-
pile a dictionary: Glowworm can be used to recover any speech
(as opposed to other methods that are limited to classifying
isolated words contained in a precompiled dictionary [37–
39, 51]).

(5) Not dependent on being withing hearing range: Glow-
worm can be applied by eavesdroppers that are located beyond
hearing range, from a distance of 15-35 meters (as opposed
to other methods that require the eavesdropper to be located
within 15 meters of the victim [18, 21]).

(6) Capable of recovering speech at a virtual meeting’s
sound level of 70 dB (in contrast to other methods that can
only be used to recover sound at a high volume [17, 18, 48]).

IV. ANALYSIS

In this section, we describe the series of experiments per-
formed to evaluate the risk of optical sound recovery posed
by the vulnerability of the power indicator LED of various
devices. The experiments analyze: (1) the influence of sound
played from speakers on the power consumption of various
devices, (2) the response of the device’s power indicator LED
to sound, and (3) the side effects added to the optical signal
which are not the result of sound played from the speakers.

The devices used in these experiments are: Logitech S120
speakers [52], Winner speakers [53], a TP-Link UE330 USB
hub splitter [54], a MIRACASE MHUB500 USB hub splitter
[55], a Raspberry Pi (RP) 4, a Google Nest Mini [56],
and Creative Pebble speakers [57]. Four of the devices are
presented in Fig. 2.

The experiments were conducted as follows: An electro-
optical sensor (the Thorlabs PDA100A2 [58], which is an
amplified switchable gain light sensor that consists of a
photodiode which is used to convert light/photons to electrical
voltage) was directed at the power indicator LED of each
device. The voltage was obtained from the electro-optical
sensor using a 24-bit ADC NI-9234 card [59] and processed
in a LabVIEW script that we wrote. The internal gain of
the electro-optical sensor was set at the highest level before
reaching saturation. The setup is presented in Fig. 2.
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Fig. 3. The six spectrograms on the right are obtained from power (upper row) and optical (bottom row) measurements of three devices when the speakers
played a frequency scan (0-4 KHz) on the left.

A. Understanding How Played Sound Affects the Power Con-
sumption

Here we explore the effect of played sound on a device’s
power consumption and show that it linearly affects the
device’s power indicator LED due to the fact that hardware
manufacturers do not integrate any voltage stabilizers or filters
in some products. We show that optical measurements can be
used to recover sound using an electro-optical sensor directed
at a device’s power indicator LED and eliminate any other
reasonable side effects that could explain this phenomenon.

1) How Played Sound Affects a Device’s Power Consump-
tion and the Intensity of Its Power Indicator LED

Here, we show that the intensity of a device’s power
indicator LED is highly correlated with the device’s power
consumption.

Experimental Setup: We created a USB adapter that allows
us to obtain power measurements from any device with a
USB input connector (the connector can be seen in Fig.
2). We conducted three experiments. In the first experiment,
the Logitech speakers’ USB was connected to the adapter
which was connected directly to the electricity. In the second
experiment, the Logitech speakers’ USB was connected to the
TP-Link USB hub splitter. The input USB connector of the
USB hub splitter was connected to the adapter which was
connected to a PC. In the third experiment, the Logitech
speakers’ USB was connected to the RP. The input micro
USB connector of the RP was connected to the adapter which
was connected to the electricity. In all of these experiments,
the audio was played via the speakers (at 70 dB). The audio
played from the speakers is a 30 second audio file that consists
of a chirp function (a frequency scan between 0-4 KHz). We
obtained optical measurements via the electro-optical sensor
which was directed at the power indicator LED of the speakers
(in the first experiment), the USB hub splitter (second exper-
iment), and the RP (third experiment). In addition, in each of
the experiments, we obtained power measurements from the
adapter by connecting it to a BNC cable that was connected to
a 24-bit ADC NI-9234 card [59]. The ADC was used to obtain
optical and electrical measurements simultaneously from each
tested device.

Results: Fig. 3 presents (1) three spectrograms extracted
from the optical signal, and (2) three spectrograms extracted
from the power signal. As can be seen, the chirp function
played by the speakers affected the power consumption of all
three devices. In the case of the RP, the frequency scan that
was played by the speakers (0-4 KHz) can be spotted in the
power consumption signal). In the cases of the TP-Link USB
hub splitter and Logitech speaker, a frequency scan between
0-8 KHz can be seen in the power consumption signal (we
discuss this phenomenon later in this section). Moreover, as
shown in Fig. 3, the intensity of the power indicator LED of
the devices is perfectly correlated with the power consumed
by the devices (excluding some optical noise which will be
discussed later in the paper).

Conclusions: Based on these experiments, we concluded
that: (1) The power consumed by the three devices correlates
with the sound that the speakers play and the intensity of
their power indicator LED. (2) The manufacturers of these
devices do not distort/change the known linear response of the
intensity of an LED to power consumption [12] by integrating
filters and voltage stabilizers into the electrical circuits. (3)
The power consumed by the speakers influences the devices
providing the power to the speakers (e.g., USB hub splitter,
RP). (4) The linear correlation between the power consumed
by the device, the audio played, and the intensity of the power
indicator LED of the devices shows sound can be recovered by
obtaining optical measurements via an electro-optical sensor
directed at a device’s power indicator LED.

2) Ruling Out Other Possible Side Effects
One might argue that the optical measurements could be

affected by a phenomenon unrelated to the changes in the
intensity of a device’s power indicator LED. For example, one
reasonable argument is that electromagnetic radiation emitted
from the device was captured by the electro-optical sensor.
Another reasonable argument is that the optical sensor captures
minuscule vibrations of the power indicator LED caused by
the device’s vibrations due to the sound waves produced from
the speakers. In order to disprove these claims, we conducted
the following set of experiments.

Experimental Setup: We placed an RP on a table and
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Fig. 4. From left to right: Spectrograms obtained from optical measurements when the RP’s power indicator LED was visible (first) and covered (second).
Spectrograms obtained from gyroscope measurements for three axes.

directed the electro-optical sensor at its power indicator LED
from a distance of one meter (through a telescope with a 15 cm
lens diameter). We connected the USB cable of the Logitech
speakers to the RP which was connected to the electricity on
the other end. The speakers were placed on a different surface
than the RP in order to eliminate any vibration resulting from
the sound waves produced by the speakers. The speakers
played an audio file consisting of a chirp function which is
a frequency scan between 200-400 Hz.

We conducted the following three experiments: In the
first experiment, we obtained optical measurements when the
electro-optical sensor was directed at the RP, however we cov-
ered the device’s power indicator LED with tape (to examine
whether the played signal appears in the optical measurements
and rule out any effect of EMR). In the second experiment, we
attached a gyroscope (MPU-6050 GY-521 [60]) to the RP to
measure its vibrations (to examine whether the played signal
appears in the gyroscope measurements and rule out any effect
of vibration). We obtained measurements from the gyroscope
via another RP which was used to sample the gyroscope at
1000 Hz. In the third experiment, we obtained optical mea-
surements when the electro-optical sensor was directed at the
RP’s power indicator LED (in order to prove that the played
signal can be identified in the optical measurements). The
third experiment was performed for the purpose of validation.
The frequency band tested in these experiments (200-400 Hz)
was chosen, since the maximum sampling rate our gyroscope
provided was 1000 Hz, which means that only frequencies
below 500 Hz can be measured.

Results: The results are presented in Fig. 4. As can be seen,
the frequency scan appears in the spectrogram obtained from
the optical measurements when a device’s power indicator
LED is visible. However, the frequency scan cannot be spotted
in the spectrograms obtained from (1) the optical measure-
ments when a device’s power indicator LED is covered, or (2)
the gyroscope measurements in each of the three axes.

Conclusions: Based on these experiments, we concluded
that (1) the optical measurements are not affected by elec-
tromagnetic radiation (if they were, the frequency scan would
have appeared in the spectrogram when the power indicator
LED was covered with tape); and (2) the optical measurements
are not affected by the vibration caused by the sound waves
produced from the speakers (if they were, the frequency scan
would have appeared in the spectrograms obtained from the
gyroscope on at least one of the three axes). These experiments
prove that the frequency scan in the optical measurements
obtained from a device’s visible power indicator LED is the

Fig. 5. FFT graphs extracted from optical measurements of the power
indicator LED of various devices when no sound was played. The frequency
of the LED (100 Hz) can be seen in the graph for each device.

result of changes in a device’s power consumption which
linearly affect the intensity of the LED.

B. Exploring the Optical Response

Here we explore the recovered optical signal, including the
baseline, side effects added, and SNR (signal-to-noise ratio).

1) Characterizing the Optical Signal When No Sound Is
Played

Here we examine the characteristics of the optical signal
when no sound is played.

Experimental Setup: We obtained five seconds of optical
measurements via an electro-optical sensor directed at the
power indicator LED of four devices.

Results: The FFT graphs extracted from the optical mea-
surements of the devices when no sound was played are
presented in Fig. 5. As can be seen, a peak appears in the
FFT at around 100 Hz; this peak is the result of the power
line frequency used to supply power to the LED. Power lines
are designed to operate at frequencies of 50 or 60 Hz, however
certain types of loads contain nonlinear components such as
diodes and transistors, and as a result, the loads produce
frequencies which are multiples of the fundamental power
line frequency (50 or 60 Hz) and are called power system
harmonics. Since a diode bridge is integrated into the LED,
it distorts the fundamental power line frequency, resulting in
power system harmonics (50 Hz, 100 Hz, 200 Hz, etc.) that
are reflected in the LED’s light intensity. Since the optical
signal is obtained via an electro-optical sensor directed at a
device’s power indicator LED, the frequency of 50 Hz and its
harmonics (100 Hz, 200 Hz, 300 Hz, etc.) are added to the
raw optical signal and are not the result of the sound we wish
to recover.

Conclusions: The power system harmonics, which are added
to the optical signal and are not the result of the sound played,
need to be filtered in order to recover the played signal.
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Fig. 6. Spectrograms extracted from optical measurements obtained from the power indicator LED of various devices when a chirp function was played
(frequency scan between 0-4 KHz). Note that in some devices (e.g., Logitech S120 speakers) the original frequency played by the speakers appears in the
spectrum of the optical signal, while in other cases (e.g., TP-Link UE330, MIRACASE MHUB500), only the first harmonic of the frequency appears in the
spectrum of the optical signal.

Fig. 7. SNR of various devices in the spectrum of 0-4 KHz at three sound levels (60, 70 dB).

TABLE I
SUMMARY OF RECOVERED OPTICAL SNR OF VARIOUS DEVICES AT SOUND LEVEL OF 70 DB

Recovered Signal
Device 0-4000 Hz 0-1000 Hz 1000-2000 Hz 2000-3000 Hz 3000-4000 Hz

Manufacturer Model Type Tone Avg.
SNR [dB] STD Avg.

SNR [dB] STD Avg.
SNR [dB] STD Avg.

SNR [dB] STD Avg.
SNR [dB] STD

Logitech S120
Speakers

Original 40.75 7.52 45.09 4.46 41.50 3.59 41.65 5.88 34.42 10.73
Winner Original 58.04 5.67 56.83 7.37 61.34 2.69 58.44 3.30 55.44 6.60
CREATIVE Pebble Modern 2.0 Original 6.95 9.67 17.46 13.35 4.17 2.39 0.2 0.5 6 5.69
TP-Link UE330 USB Hub First harmonic 20.65 14.53 36.85 8.02 21.35 12.37 16.12 10.98 7.61 8.73
MIRACASE MHUB500 First harmonic 10.72 14.79 31.71 11.41 5.33 9.62 2.74 5.66 2.72 5.55
Raspberry Pi 4 Microcontroller Original 15.73 9.59 26.85 6.23 18.21 4.79 11.46 6.16 5.93 5.70
Google Google Nest Smart Assistant Original 1.53 4.15 3.81 6.23 2.3 4.68 0 0 0 0

2) Power Indicator LED’s Response to Sound at 0-4 KHz
In the next experiments, we tested the response of the

power indicator LED of various devices to a wide range of
frequencies.

Experimental Setup: We conducted the following experi-
ments: In the first experiment, we obtained optical measure-
ments from the power indicator LED of two speakers (Log-
itech S120 speakers and Winner speakers) that were connected
to the electricity. In the second experiment, we obtained optical
measurements from the power indicator LED of devices (TP-
Link UE330 USB hub splitter [54], MIRACASE MHUB500
USB hub splitter [55], RP) that were used to provide power
to the speakers via their USB input ports. In each of the
experiments, the audio was played via speakers at a sound
level of 70 dB. The audio played from the speakers is a 30
second audio file that consists of a chirp function (a frequency
scan between 0-4 KHz).

Results: Fig. 6 presents the spectrograms obtained from the
optical measurements. Three observations can be made from
the spectrograms: (1) For some devices, the signal that appears
in the optical measurements is much stronger (e.g., Logitech
S120 speakers) than that of other devices (e.g., the RP). (2)
For some devices, the signal obtained matches the original
chirp function (e.g., Winner speakers). (3) For some devices,
only the first harmonic of the chirp appears in the spectrogram
(e.g., TP-Link USB hub splitter).

Conclusions: Based on these experiments, we concluded
that: (1) For devices with a weak recovered optical signal,
the application of denoising techniques is required to optimize
the SNR. (2) For devices where the recovered optical signal
appears in the first harmonic, the use of downtuning is
required.

Next, we conducted an experiment to calculate the SNR of
each of the seven devices (Logitech S120 speakers, Winner
speakers, TP-Link UE330 USB hub splitter, MIRACASE
MHUB500 USB hub splitter, RP, Google Nest Mini, and
Creative Pebble speakers) across the 0-4 kHz spectrum at two
levels (60 and 70 dB).

Experimental Setup: We used the same experimental setup
as the previous experiment, however this time we played a
different audio file which consists of various sine waves (120,
170,....1020 Hz), where each sine wave was played separately
for two seconds. We played the audio file via the the speakers
at two sound levels (60 and 70 dB) and obtained optical
measurements.

Results: The SNR is presented in Fig. 7 and Table I. We
used the SNR as a measure in order to assess Glowworm’s
to capture essential frequency bands used for speech recovery.
Based on the experiments we conducted, we consider an SNR
over 40 dB as a high quality signal; an SNR between 20 and
40 dB as a medium quality signal; and an SNR below 20 dB as
a low quality signal. The following observations can be made
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based on the results: (1) The SNR changes depending on the
type of device used.

This is the result of the differences in their power con-
sumption and the intensity of the light emitted from their
power indicator LED. (2) For some devices, the SNR has
a low standard deviation (STD) throughout the spectrum
examined (e.g., the STD of the SNR of the optical signal
obtained from the Logitech S120 speakers is 7.5, and the
STD of the SNR of the optical signal obtained from the
Winner speakers is 5.6), which indicates a stable response,
while for other devices, the SNR has a large STD (e.g., RP),
which is usually the result of a decrease in the SNR as a
function of the frequency. (3) For some devices, the effective
spectrum that can be used to recover sound is narrow. For
example, the SNR obtained from the power indicator LED of
the MIRACASE MHUB500E is only stable up to 1000 Hz;
for this device, the SNR of the spectrum beyond 1000 Hz is
extremely unstable. (4) In general, the SNR of the recovered
signal improves as the sound level increases. This phenomenon
can be explained as follows: When the volume of the sound
played by the speakers increases, the power consumption
increases. The power is the product of voltage and current.
The current consumed from AC-DC converter output stage
capacitors (which have a limited amount of energy) increases,
and as a result, the voltage level decreases proportionally to
the current and volume levels. Since a device’s power indicator
LED is connected in parallel to the capacitor, it is linearly
affected by voltage levels; its intensity also increases, and a
greater amount of light is emitted. As a result, more photons
are captured by the electro-optical sensor, which yields a better
SNR. (5) The improvement in the SNR that results from higher
volume levels varies depending on the device; in some cases,
the improvement is significant (e.g., the TP-Link USB hub
splitter and RP), while in other cases (e.g., Winner speakers),
the improvement is less dramatic. (6) For some vulnerable
devices (e.g., Google Nest Mini and Creative Pebble speakers),
the SNR is poor due to the weak intensity of their power
indicator LED. This fact requires more sensitive electro-optical
sensor (with lower noise level) to recover sound from their
power indicator LED.

Conclusions: Based on these experiments, we concluded
that (1) a sound level of 70 dB (the sound level of virtual
meetings) produces a high SNR, and (2) for devices in which
the SNR decreases as a function of the frequency, an equalizer
needs to be used to amplify the energy of weak frequency
ranges.

3) The Influence of Ambient Light
In the next experiment we investigate the influence of

ambient light in the LED’s environment on the SNR calculated
from the optical signal obtained.

Experimental Setup: An electro-optical sensor was directed
at the power indicator LED of speakers (Logitech S120 speak-
ers) from a distance of five meters. The electro-optical sensor
obtained measurements from the speakers’ power indicator
LED while the speakers played various sine waves (120,
170,....1020 Hz). This setup was repeated twice: (1) when the
lights were on, and (2) when the lights were off.

Results: The SNR is presented in Fig. 8. As can be seen, the

Fig. 8. SNR obtained from Logitech S120 speakers’ power indicator LED
when ambient lights were on and off.

effect of ambient light on the SNR calculated from the optical
signal is negligible, and no additional procedures are required.
This is due to the fact that the ambient light only adds its power
system harmonics to the spectrum of the optical signal, and
the harmonics can be filtered early in the processing stage.

Conclusion: Ambient light present in the power indicator
LED’s environment does not affect Glowworm’s ability to
recover sound.

V. OPTICAL-ACOUSTIC TRANSFORMATION

In this section, we leverage the findings presented in Section
IV and present optical-acoustic transformation (OAT), which
we used to recover audio signals from the optical signals
obtained from an electro-optical sensor directed at a device’s
power indicator LED. Throughout this section, we consider
snd(t) as the audio played inside the target’s room by the
speakers, opt(t) as the optical signal obtained via an electro-
optical sensor directed at the power indicator LED of a device,
and snd∗(t) as the audio signal recovered from opt(t) using
OAT. OAT consists of the following stages:

Filtering Side Effects. As discussed in Section IV and
presented in Fig. 5, there are factors which affect the optical
signal opt(t) that are not the result of the sound played snd(t)
(e.g., peaks which are added to the spectrum that are the result
of the light frequency of the power indicator LED and its
harmonics - 100 Hz, 200 Hz, etc.). We filter the light frequency
and its harmonics (its first, second, third, ... order harmonics)
from opt(t) using notch/bandstop filters.

Downtuning. As discussed in Section IV and presented in
Fig. 6, in some cases only the second order of the frequencies
of the played signal snd(t) appears in the optical signal opt(t).
As a result, the recovered signal snd∗(t) is uptuned compared
to the original signal snd(t) played by the speakers. This
case requires the eavesdropper to apply downtuning to the
optical signal opt(t) in order to recover sound at the original
pitch. Downtuning is a standard procedure in the area of
sound processing used to play a song at a lower tone. We
implemented this procedure digitally according to [61].

Speech Enhancement. Speech enhancement is performed
to maximize the signal’s dynamic range before applying
additional filters. To do so, we normalize the signal by scaling
the values of opt(t) to the range of [-1,1]
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Fig. 9. The influence of the five stages of optical-audio transformation (OAT)
on the recovered signal.

Denoising. This is the process of removing noise from a
signal to increase the SNR and optimize its quality. Various
techniques have been demonstrated to reduce noise, however
we reduce noise by applying spectral subtraction, an adaptive
technique proposed for denoising single channel speech [62].

Equalizer. As discussed in Section IV and presented in
Fig. 7, the SNR obtained from some devices is unstable and
decreases as a function of the frequency. We use an equalizer
in order to amplify the response of weak frequencies by
adjusting the balance between frequency components within
an electronic signal.

The techniques that enable OAT to recover audio signals
from the optical signals are extremely popular in the area of
speech processing; we used them for the following reasons:
(1) the techniques rely on a speech signal that is obtained from
a single channel; if eavesdroppers have the capability of sam-
pling a device’s power indicator LED using multiple sensors,
thereby obtaining several signals via multiple channels, other
methods can also be applied to recover an optimized signal,
(2) these techniques do not require any prior data collection
to create a model; recent methods use learning-based models
(e.g., neural networks) to optimize the speech quality in noisy
channels, however such methods require a large amount of
data for the training phase in order to create robust models,
something eavesdroppers would likely prefer to avoid, and (3)
the techniques can be applied in real-time applications, so the
optical signal obtained can be converted to audio with minimal
delay.

The influence of each step of the OAT on the recovered
signal when the transformation is used to recover an arbitrary
sentence is illustrated in Fig. 9. As can be seen, the raw
optical signal is very noisy. However, the application of speech
enhancement and denoising techniques significantly improves
the SNR. The equalizer is only used for fine-tuning.

Fig. 10. Experimental setup: the telescope and the four devices used in the
experiments. A PDA100A2 electro-optical sensor is mounted on the telescope.
The electro-optical sensor outputs voltage which is sampled via an ADC (NI-
9234) and processed in LabVIEW.

VI. EVALUATION

In this section, we evaluate the performance of the Glow-
worm attack in terms of its ability to recover speech from
the power indicator LED of various devices. We start by
comparing Glowworm’s performance to the performance of
the visual microphone and Lamphone in a lab setup. Then,
we test the influence of distance and the sound volume on
Glowworm’s performance when recovering speech through an
office’s transparent glass window/door.

The reader can assess the quality of the recovered sound
visually by analyzing the extracted spectrograms, qualitatively
by listening to the recovered audio signal online,1, 2 and quan-
titatively based on metrics used by the audio processing com-
munity to compare a recovered signal to its original signal: (1)
Intelligibility - a measure of the comprehensibility of speech in
given conditions [63]. To measure intelligibility, we used the
metric suggested by [64] which results in values between [0,1].
A higher intelligibility indicates better sound quality. (2) Log-
Likelihood Ratio (LLR) - a metric that captures how closely
the spectral shape of a recovered signal matches that of the
original clean signal [65]. A lower LLR indicates better sound
quality. (3) NIST-SNR - the speech-to-noise ratio, which is
defined as the logarithmic ratio between the estimated speech
power and noise power over 20 consecutive milliseconds. A
higher NIST-SNR indicates better sound quality.

We used the following equipment and configurations to
recover sound in the experiments conducted and described
in this section: a telescope (with a 20 cm lens diameter)
was directed at the power indicator LED of the device. We
mounted an electro-optical sensor (Thorlabs PDA100A2 [58])
to the telescope. The voltage was obtained from the electro-
optical sensor using a 24-bit ADC NI-9234 card [59] and
was processed in a LabVIEW script that we wrote. The
sampling frequency of the ADC was configured at 2 KHz.
In the remainder of this section we refer to this setup as the

1 https://youtu.be/Mi6T2K9zQgE
2 https://youtu.be/eZD4SdeKe7E

https://youtu.be/Mi6T2K9zQgE
https://youtu.be/eZD4SdeKe7E
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Fig. 11. mabw0 sa1:"She had your dark suit in greasy wash water all year"
recovered from various devices.

eavesdropping equipment. The level of the played sound was
measured using a professional decibel meter.

A. Comparing Glowworm to the Visual Microphone and Lam-
phone

First, we compare the performance of Glowworm to that of
the visual microphone [18] and Lamphone [17] using a similar
experimental setup to the one used in the studies presenting
those techniques. In those studies, the recovery of six sen-
tences from the TIMIT repository [66] was demonstrated by
playing the sentences via speakers and analyzing the recovered
speech in a lab setup. We compare Glowworm’s performance
when recovering the same sentences from the power indicator
LED of the four devices that with the highest SNR in Table I:
Two types of speakers (Logitech S120 and Winner speakers)
and two types of USB hub splitters (TP-Link UE330 and
MIRACASE MHUB500).

Experimental Setup: We replicated the experimental setup
used in both the visual microphone [18] and Lamphone [17]
studies as follows: We placed the devices on a desktop inside
a lab and played the same six sentences from the TIMIT
repository [66] that were recovered by the visual microphone
and Lamphone via the speakers, at the same volume level used
in the visual microphone study (an average sound level of 95
dB). We note that the speakers we used this research are not
capable of producing speech at sound levels higher than 85
dB, so we set the maximum sound level. In our experiment,
the eavesdropping equipment was placed 2.5 meters from
the devices, behind a closed door. Our experimental setup is
presented in Fig. 10. In this experiment, the performance of
the Glowworm attack was evaluated on the task of recovering
speech by applying the attack in a direct manner, obtaining
optical measurements from the power indicator LED of two
speakers, and in indirect manner, obtaining optical measure-
ments from the power indicator LED of two USB hub splitters.

Results: We recovered speech by applying OAT to the op-
tical measurements. The recovered audio signals are available
online1 where they can be heard. The signals recovered by
the power indicator LED of the two speakers and USB hub
splitters when we played the sentence "She had your dark suit
in greasy wash water all year" are presented in Fig. 11. The
intelligibility, LLR, and NIST-SNR of the recovered signals

are reported in Table II. Comparing these results to the results
reported in the original Lamphone [17] and visual microphone
[18] studies on the same sentences, we find that: (1) The
average intelligibility of the speech recovered from the power
indicator LED of the speakers (by applying the attack in a
direct manner) is considered good/fair (according to [63]),
however the average intelligibility of the speech recovered
from the power indicator LED of the USB hub splitters (by
applying the attack in an indirect manner) is considered poor.
The visual microphone and Lamphone yield the same level of
results in terms of intelligibility, as their average intelligibility
is also considered good. (2) The average LLR of the speech
recovered from the power indicator LED of Winner speakers
is 1.74, which is lower (better) than Lamphone’s average LLR
(1.8) but higher (worse) than the visual microphone’s average
LLR (1.53). The average LLR of the other devices was higher
(worse) than that of the visual microphone and Lamphone.
(3) The average NIST-SNR of the speech recovered from the
power indicator LED of the Logitech S120 speakers is 11.9,
which is higher (better) than Lamphone’s average LLR (9.6)
but lower (worse) than the visual microphone’s average LLR
(24.5). The average NIST-SNR of the other devices was lower
(worse) than that of the visual microphone and Lamphone.

We conclude that the quality of the speech recovered by
Glowworm is highly dependant on the device that is tested.
We note that the Glowworm attack does not rely on the
distance between the sound source and a lightweight vibrating
object, whereas the results reported by Lamphone and the
visual microphone are based on experiments performed when
a vibrating object was placed a few centimeters from speakers.
As a result, the quality of a signal recovered using the
Glowworm attack at a fixed distance is stable and does not
vary depending on the distance to nearby objects.

B. The Influence of Distance on Glowworm’s Performance

Next, we evaluate the influence of distance on Glowworm’s
performance.

We evaluate Glowworm’s performance on the task of recov-
ering sound at the speech level of a typical virtual meeting:
70 dB. In the following set of experiments we attempted
to recover sound from the power indicator LED of Winner
speakers from various distances. We placed the speakers on
a desktop inside an office; the eavesdropping equipment was
located outside the office, behind two closed clear glass doors.
As a result, no sound from the speakers was heard from the
eavesdropper’s position.

The setup can be seen in Fig. 12.
First, we start by examining the influence of the sound level

on the SNR.
Experimental Setup: We created an audio file that consists of

various sine waves (120, 170, 220, .... 1970 Hz) and placed the
eavesdropping equipment 15, 25, and 35 meters away from the
speakers. We played the audio file via the speakers at 70 dB,
obtaining the optical measurements. The electro-optical sensor
was configured for the highest gain level before saturation.

Results: Fig. 13 presents the SNR for various distances. As
can be seen from the results, the SNR looks very promising
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TABLE II
PERFORMANCE OF GLOWWORM ON SPEECH RECOVERY FROM VARIOUS DEVICES

Intelligibility LLR NIST-SNR
Speakers USB Hub Splitters Speakers USB Hub Splitters Speakers USB Hub Splitters

Speech Winner Logitech S120 TP-Link MIRACASE Winner Logitech S120 TP-Link MIRACASE Winner Logitech S120 TP-Link MIRACASE
Female speaker -
fadg0, sa1

"She had your dark suit in
greasy wash water all year" 0.618 0.426 0.378 0.374 1.765 2.238 2.023 2.758 3.3 12.8 5 5

Female speaker -
fadg0, sa2

"Don’t ask me to carry
an oily rag like that" 0.623 0.542 0.341 0.333 1.787 2.39 2.585 2.322 9.5 5 11.5 5

Male speaker -
mccs0, sa1

"She had your dark suit in
greasy wash water all year" 0.666 0.542 0.366 0.350 2.126 2.134 2.154 2.323 15.5 8.8 10.5 5.5

Male speaker -
mccs0, sa2

"Don’t ask me to carry
an oily rag like that" 0.709 0.539 0.428 0.434 1.663 2.508 2.719 2.581 4 15.8 12.3 3.8

Male speaker -
mabw0, sa1

"She had your dark suit in
greasy wash water all year" 0.574 0.45 0.368 0.318 1.576 2.029 2.24 2.009 9.8 8.8 8.8 6

Male speaker -
mabw0, sa2

"Don’t ask me to carry
an oily rag like that" 0.697 0.56 0.368 0.347 1.658 2.176 1.774 2.237 13 20.3 9.3 4.8

Average 0.647 0.509 0.374 0.359 1.763 2.246 2.249 2.372 9.183 11.917 9.567 5.017
STD 0.051 0.056 0.028 0.041 0.276 0.175 0.317 0.263 4.825 5.539 2.592 0.738

Fig. 12. Experimental setup: The eavesdropping equipment, which was placed
outside an office (in a location denoted by the red rectangle), was directed at
the speakers which were placed in various locations (denoted with blue stars)
at a distance of 15, 25, and 35 meters from the eavesdropping equipment. Two
closed glass doors separated the eavesdropping equipment and the speakers
(denoted by yellow bars).

Fig. 13. The SNR for various distances at a sound level of 70 dB.

and stable through the entire spectrum measured. Unsurpris-
ingly, the SNR decreases as a function of the distance, since
light deteriorates with distance.

Next, we evaluated Glowworm’s performance in terms of
its ability to recover speech audio from various distances. In
order to do so, we recovered a well-known statement made by
Donald Trump: "We will make America great again!"

Experimental Setup: We placed the eavesdropping equip-
ment at three distances (15, 25, and 35 meters) from the
Winner speakers’ power indicator LED. We played the audio
file via the speakers at 70 dB. The electro-optical sensor was
configured for the highest gain level before saturation.

Results: We recovered speech by applying OAT to the op-
tical measurements. The recovered audio signals are available

Fig. 14. "We will make America great again!" recovered from various
distances.

TABLE III
"WE WILL MAKE AMERICA GREAT AGAIN!" - RESULTS OF RECOVERED

SPEECH FROM VARIOUS DISTANCES

Intelligibility LLR NIST SNR
15m 0.607 1.704 17.3
25m 0.552 3.24 14
35m 0.476 3.359 9.3

online2 where they can be heard. The spectrogram of the
recovered speech is presented in Fig. 14, and the intelligibility,
LLR, and NIST-SNR of the recovered signals are reported in
Table III.

Conclusions: The results demonstrate that the intelligibility
of the recovered signals is considered good up to a distance
of 15 meters and fair up to a distance of 35 meters.

The results obtained show that Glowworm allows eaves-
droppers to recover sound from a distance of 35 meters at
a lower sound level than eavesdropping methods proposed in
previous studies which require higher sound levels of 85-94
dB [48] and +95 dB [18, 50]. In addition, the results show that
by analyzing optical measurements, eavesdroppers can double
the range of the previous SOTA method used to recover sound
from a device using EMR analysis [21].

VII. POTENTIAL IMPROVEMENTS

In this section, we suggest methods that eavesdroppers
can use to optimize the quality of the recovered audio or
increase the range (i.e., distance between the eavesdropper and
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a device’s power indicator LED), without changing the setup
of the target location.

The potential improvements suggested below are presented
based on the component they optimize.

Telescope. The amount of light that is captured by a
telescope with a diameter of 2r is determined by the area
of its lens (πr2). As a result, using telescopes with a larger
lens diameter enables the sensor to capture more light and
optimizes the SNR of the recovered audio signal.

Electro-Optical Sensor. The sensitivity of the system can
be enhanced by increasing the sensor’s internal gain. Eaves-
droppers can use a sensor that supports higher internal gain
levels (note that the electro-optical sensor used in this study,
PDA100A2 [58], outputs voltage in the range of [-10,10] and
supports a maximum internal gain of 70 dB). Alternatively, the
sensitivity of the system can be enhanced by using an electro-
optical sensor with a lower noise level. Another option for
maximizing the SNR is to profile the electro-optical sensor’s
self-noise (when the light is recorded) in order to filter its self
noise.

Sound Recovery System. While many advanced denoising
methods have been presented in the audio processing field, a
large amount of data is often required to train a model that
profiles the noise in order to optimize the output’s quality.
Such algorithms/models can be used in place of the simple
methods used in this research. In addition, various advanced
dedicated algorithms for improving speech quality can also be
used to extend the effective band of the recovered signal (e.g.,
artificial bandwidth extension algorithms [67–71]). In addition,
more sensitive ADC (with lower sound level) can be used to
sample the electro-optical sensor.

VIII. COUNTERMEASURES

In this section, we describe several countermeasure methods
that can be used to mitigate or prevent the Glowworm attack.

Manufacturer side. In most devices the power indicator
LED is connected directly to the power line (see Fig. 15a). As
a result, the device’s power indicator LED is highly affected by
the power consumption fluctuations that occur when speakers
produce sound. To counter this phenomenon, a few approaches
should be considered by hardware manufacturers: (1) Using a
capacitor: A capacitor can be integrated in parallel to the power
LED indicator; in this case, the capacitor behaves as a low-pass
filter (see Fig. 15b). This is a straightforward and inexpensive
solution for reducing AC fluctuations. However, in devices
with high power consumption, the integrated capacitor must
be large enough to supply a sufficient amount of current to the
speakers. (2) Using an OPAMP: This can be implemented by
integrating an additional OPAMP between the power line and
the power indicator LED (see Fig. 15c) or by using an existing
GPIO port of an integrated microcontroller as a power supply
for the power indicator LED (see Fig. 15d). In both cases, this
will eliminate power line AC fluctuations by a factor of the
OPAMP amplifier’s CMRR (common mode rejection ratio).

Consumer side. The attack can also be prevented by placing
black tape over a device’s power indicator LED. While this
solution decreases a device’s UX, it prevents the attackers from
obtaining optical measurements from vulnerable devices.

‘

Fig. 15. Circuits vulnerable to the Glowworm attack (a), a countermeasures
using a capacitor (b), an additional OPAMP amplifier (c), and the existing
OPAMP (d).

IX. RESPONSIBLE DISCLOSURE

We performed the following steps:
1) We disclosed the details of the attack with the man-

ufacturers of the devices that were analyzed in this
research via their bug bounty programs and contact-us
email addresses: Google, Logitech, Creative, TP-Link,
Raspberry Pi, Winner, and MIRACASE. The email sent
to each of the manufacturers contained explanations
about the research, the Glowworm attack, proof that
their devices are vulnerable to the Glowworm attack
(electric and optical spectrograms of chirp functions),
and recovered speech signals.

2) We did not share the paper in order to keep the names
of the other manufacturers confidential. In addition,
we decided to refrain from informing manufacturers of
devices that were not tested in this research about the
Glowworm attack. We made this decision in order to
prevent the information from spreading before giving
the affected device manufacturers time to respond.

3) We encouraged the manufacturers to meet with us in
order to ensure that they understood the problem and
assist them in developing a countermeasure.

4) We explained to the manufacturers that we sent our
findings to a conference and our paper may become
public around November.

5) We refrained from: (1) uploading the paper to arXiv, (2)
discussing our findings with other researchers, and (3)
sending the research to non-academic conferences.

Google, TP-Link, and Creative responded to our disclosure,
asked us for more details, sent the findings of this research to
their product team, and informed us that they would update
us regarding their next steps. AS of this writing, Logitech,
Raspberry Pi, Winner, and MIRACASE have not responded
to our disclosure.

X. DISCUSSION, LIMITATIONS & FUTURE WORK

The purpose of this research was to raise awareness regard-
ing the feasibility of recovering sound by analyzing optical
measurements obtained from an electro-optical sensor directed
at a device’s power indicator LED. While we are the first to
demonstrate this method in the academic realm, we wonder
whether our method is already known within the military and
espionage realms. While we can only hypothesize about the
answer to this question, for the following reasons we believe
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that we are not the first to exploit a device’s power indicator
LED to recover sound: (1) power indicator LEDs have been
integrated into devices for many years, (2) power indicator
LEDs’ linear response to power consumption has been known
for many years, (3) sound recovery is of interest to various
entities around the world, and (4) virtual meeting platforms
have been used for many years, given the fact that their
protocols are encrypted. In addition, the case of the "Great
Seal Bug" [72] proved that a new technology, the RFID, was
used by agencies to eavesdrop three decades before it was
scientifically discovered in 1973 [73].

We recommend that other hardware manufacturers em-
pirically test whether their devices are vulnerable to the
Glowworm attack. We hope that our findings will encourage
hardware manufacturers to take our suggestions to empiri-
cally test their devices and redesign their electrical circuits
(according to the suggestions provided in Section VIII), in
order to prevent eavesdroppers from applying the Glowworm
attack in the future. However, we are not certain that they
will implement our suggestions due to the financial impli-
cations of doing so, as some of the solutions may increase
the manufacturer’s overall cost, decreasing the revenue or
requiring the manufacturer to increase the price of the product
(which could make the device less attractive to consumers).
While the cost of our countermeasures might seem negligible,
given the likelihood that the devices are mass produced, the
addition of a component to prevent the attack could cost a
manufacturer millions of dollars. Given the cost-driven nature
of consumers and the profit-driven nature of manufacturers,
known vulnerabilities are often ignored as a means of reducing
costs. This fact may leave many electrical circuits vulnerable
to Glowworm attack for years to come.

We also note that the area of optical sound eavesdropping
has progressed significantly in the past seven years: a few
studies have presented innovative methods to recover speech
using data acquired from a high frequency video camera [18],
LiDAR [19], and an electro-optical sensor [17]. Our attack
continues the trend of recovering sound by exploiting optical
side effects, and we believe that other studies will address this
topic in the next few years.

We note that the risk posed by optical signals obtained from
a device’s power indicator LED is not limited to sound recov-
ery. Various attacks where the attacker analyzed a device’s
power consumption have already been demonstrated. The
optical signals obtained from a device’s power indicator LED
serve as a remote approximation of the power consumed by the
device due to the fact that: (1) the intensity of LED is highly
correlated with the power consumption, and (2) LEDs are
highly responsive to their input voltage. While, the intensity
of a device’s power indicator LED may provide an accurate
approximation at high resolution (at GHz) regarding the power
consumed by the device [74], the primary disadvantage comes
from the sensors’ side: the frequency bandwidth of the electro-
optical sensors we used in this research are limited to a few
MHz. As a result, only attacks that are based on power analysis
and can be applied with a sampling rate lower than a few
MHz may be practical against the devices. However, it has
already been shown that many attacks can be applied with a

Fig. 16. Two spectrograms extracted from Logitech speakers: Z200 (left)
and Z120 (right). The results show that not all devices produced by the same
manufacturer are vulnerable to optical TEMPEST attacks.

very low sampling rate, e.g., RSA keys were recovered from
acoustic signals that were sampled at low sampling rates (at
few KHz). Such attacks could also be applied with optical
signals obtained from a device’s power indicator LED

The Glowworm attack suffers from one main disadvantage:
The quality of the sound recovered is proportional to the
quality of the equipment used by the eavesdropper. In our
study, the cost of our equipment came to $1000 ($250 -
telescope, $250 - electro-optical sensor, and $500 - ADC),
an investment which allowed us to recover speech from a
distance of 35 meters. In order to increase the attack range
and recover higher quality sound, more expensive professional
equipment is required (e.g., a more sensitive ADC and electro-
optical sensor, a professional telescope). Such equipment
would enable eavesdroppers to recover sound from vulnerable
devices that have very weak LED intensity (e.g., Google Nest
Mini, Creative Pebble speakers). In addition, some electrical
circuits are not vulnerable to the Glowworm attack because
they contain voltage stabilizers and filters that distort/change
the known linear response of the intensity of the LED to power
consumption. Interestingly, we found that while the power
indicator LED of Logitech S120 speakers leaks information
regarding the sound that is played from them, other speakers
sold by the same manufacturer, Logitech Z200 speakers, do
not leak such information, as can be seen in Fig. 16.

For future work, we suggest investigating the possibility of:
(1) improving the Glowworm attack without the use of expen-
sive equipment (e.g., improving the recovery model by using
advanced models such as artificial bandwidth extension [67–
71]) and (2) recovering non-acoustic information from devices
(e.g, optical cryptanalysis via a device’s power indicator LED).
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XI. SOUND RECOVERY ALGORITHM

The input to the algorithm is (1) optical−stream - a pointer to the optical
stream (the output of an ADC that samples the electro-optical sensor), (2)
sample_freq - the frequency that the ADC samples, and (3) a equalizer−
function - a function which is used for equalization. The five stages of
Algorithm 1 for recovering sound are described below.

Algorithm 1 Recovering Audio from an Optical Signal
1: INPUT: optical-stream, sample_freq, equalizer-function
2: LightFreq = 100
3: while (!isEmpty(optical-stream) do)
4: /*Read from optical-stream to a buffer*/
5: opt[] = read(optical-stream,sample_freq)
6: rec_snd* = opt
7: /*Filtering side effects*/
8: for (i = LightFreq; i < sample_freq/2; i+=LightFreq)

do
9: rec_snd** = bandstop(i,rec_snd**)

10: /*Scaling to [-1,1]*/
11: min = min(rec_snd*), max = max(rec_snd*)
12: for (i = 0; i < len(snd*); i+=1) do
13: rec_snd*[i] = -1 + (rec_snd∗[i]−min)∗2

max−min

14: /*Noise reduction*/
15: rec_snd* = spectral-subtraction(rec_snd*)
16: /*Balancing*/
17: rec_snd* = equalizer(rec_snd*,equalizer-function)
18: play (rec_snd*)

XII. APPENDIX - SPECTROGRAMS OF RECOVERED
SPEECH
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Fig. 17. mabw0 sa2: "Don’t ask me to carry an oily rag like that" recovered from various devices.

Fig. 18. mccs0 sa2: "Don’t ask me to carry an oily rag like that" recovered from various devices.

Fig. 19. mccs0 sa1: "She had your dark suit in greasy wash water all year" recovered from various devices.
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Fig. 20. fadg0 sa2:"Don’t ask me to carry an oily rag like that" recovered from various devices.

Fig. 21. fadg0 sa1: "She had your dark suit in greasy wash water all year" recovered from various devices.
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