

What programmers should know
about Memory

Shankar Viswanathan
BLU July, 2023

Agenda
● Memory types & hierarchy

– DRAM
– SRAM (used in caches)

● Brief description of:
– Coherency
– Consistency

What’s with the title?
● Paper by Ulrich Drepper from 2007
● Riff on earlier paper titled: “What Every

Computer Scientist Should Know About
Floating-Point Arithmetic” by David Goldberg

https://akkadia.org/drepper/cpumemory.pdf
https://pages.cs.wisc.edu/~david/courses/cs552/S12/handouts/goldberg-floating-point.pdf

https://en.wikipedia.org/wiki/Memory_hierarchy

Agenda
● Memory types & hierarchy

– DRAM
– SRAM (used in caches)

● Brief description of:
– Coherency
– Consistency

Source: https://www.allaboutcircuits.com/technical-articles/introduction-to-dram-dynamic-random-access-memory/

Multi-bank DRAM array

Types of DRAM
● DDR
● LPDDR
● GDDR
● HBM

Memory interleaving
● Channel interleave
● Rank interleave
● Bank interleave

UMA vs NUMA

DRAM timings
● tCL
● tRCD
● tRP
● tRAS
● tCCD
● tRRD
● tRTW
● …
● Alphabet soup continues!

DRAM Write Operation

Source: https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr5/ddr5_sdram_core.pdf

DRAM Read Operation

Source: https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr5/ddr5_sdram_core.pdf

Write to Read

Source: https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr5/ddr5_sdram_core.pdf

Challenge in Memory Controller Design

● Goal is to maximize utilization of DRAM data bus

● Manage all these timing constraints

● Balance requirements of read latency vs. throughput
– CPUs are latency sensitive, GPUs are BW hungry

● Satisfy QoS requirements of any real-time clients
– Audio & Display controllers have strict requirements

● Manage other high-level goals: fairness, power efficiency, etc.

Agenda
● Memory types & hierarchy

– DRAM

– SRAM (used in caches)
● Brief description of:

– Coherency
– Consistency

SRAM

6T SRAM cell SRAM array

Caches

● SRAM array used to hold
most frequently accessed
data in the processor

● Large area devoted to
caches

Cache organization

● Small fast L1 instruction and data
caches

● Larger L2 cache per CPU core
● Shared L3 cache over multiple cores
● Misses from L3 go to DRAM
● Some designs can have separate

LLC (last level cache) that can be
shared by other subsystems in the
chip (e.g. GPU, NPU etc.)

Source: Computer Architecture by Hennessey & Patterson

3D stacked cache

Hybrid bonding

Source: https://www.techpowerup.com/review/amd-ryzen-7-5800x3d/2.html

Agenda
● Memory types & hierarchy

– DRAM
– SRAM (used in caches)

● Brief description of:
– Coherency
– Consistency

Cache coherency
● Hardware ensures caches are in sync

with each other when one processor
updates the value at a particular address

Memory Consistency

● Coherence deals
with multiple
accesses to the
same address

● Consistency has to
do with ordering of
accesses to different
addresses

If data = flag = 0 initially, what gets printed?

CPU0 CPU1

data = 1; while(flag != 1);

flag = 1; print(data);

Consistency explained
● A consistency model specifies a contract between the programmer and

a system, wherein the system guarantees that if the programmer follows
the rules for operations on memory, memory will be consistent and the
results of reading, writing, or updating memory will be predictable

● L. Lamport defined a basic consistency model called “Sequential
Consistency” in which every thread executes operations in strict order
– This greatly limits performance and thus no major ISA implements it

● Different consistency models therefore define the extent to which R →
R, W → R, R → W, and W → W orderings are maintained

Popular ISA Consistency models
● x86/AMD64: a flavor of TSO (total store ordering) –

stores from the same thread appear in order
– Previous example code would always print data = 1

● ARM: weak ordering, allows any reordering
– data = 0 or data = 1 are both possible

● RISC-V: RVWMO (weak memory ordering), also allows any
reordering

I’m a programmer and I sat through
your boring talk so far.

Why does any of this matter?

I’m a programmer: why does any of
this matter?

● Code performance is very dependent on caches and memory system. C code:
 for (int i = 0; i < N; i++) {

 for (int j = 0; j < M; j++) {

 C[i][j] = A[i][j] + B[i][j]; → good performance

 // C[j][i] = A[j][i] + B[j][i]; → bad! (good in Fortran though)

 }

 }

● LLMs have billions of parameters, partitioning the problem and knowing what
should and should not be cached is crucial to achieve high performance

● Graphics shaders or GPGPU compute kernels have to be very aware of DRAM
layout and timings to extract maximum BW utilization

I’m a programmer: why does any of
this matter? (2)

● Compilers and any hand-optimized code have to
deal with consistency model
– Fences have to be inserted based on target

architecture
– But unnecessary fences will kill performance

● Language runtimes and virtual machines (like
JVM) can impose their own behavior

And please don’t orphan your
memory channels

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

