
freedom-to-tinker.com

New research: There's no need to
panic over factorable keys–just
mind your Ps and Qs

Nadia Heninger

12-15 minutes

You may have seen the preprint posted today by Lenstra et al.

about entropy problems in public keys. Zakir Durumeric, Eric

Wustrow, Alex Halderman, and I have been waiting to talk

about some similar results. We will be publishing a full paper

after the relevant manufacturers have been notified.

Meanwhile, we’d like to give a more complete explanation of

what’s really going on.

We have been able to remotely compromise about 0.4% of all

the public keys used for SSL web site security. The keys we

were able to compromise were generated incorrectly–using

predictable “random” numbers that were sometimes repeated.

There were two kinds of problems: keys that were generated

with predictable randomness, and a subset of these, where

the lack of randomness allows a remote attacker to efficiently

factor the public key and obtain the private key. With the

private key, an attacker can impersonate a web site or possibly

New research: There's no need to panic over fact... about:reader?url=https://freedom-to-tinker.com/...

1 of 11 5/16/19, 9:59 PM



decrypt encrypted traffic to that web site. We’ve developed a

tool that can factor these keys and give us the private keys to

all the hosts vulnerable to this attack on the Internet in only a

few hours.

However, there’s no need to panic as this problem mainly

affects various kinds of embedded devices such as routers

and VPN devices, not full-blown web servers. (It’s certainly

not, as suggested in the New York Times, any reason to have

diminished confidence in the security of web-based

commerce.) Unfortunately, we’ve found vulnerable devices

from nearly every major manufacturer and we suspect that

more than 200,000 devices, representing 4.1% of the SSL

keys in our dataset, were generated with poor entropy. Any

weak keys found to be generated by a device suggests that

the entire class of devices may be vulnerable upon further

analysis.

We’re not going to announce every device we think is

vulnerable until we’ve contacted their manufacturers, but the

attack is fairly easy to reproduce from material already known.

That’s why we are working on putting up a web site that you

can use to determine whether your device is immediately

vulnerable.

Read on for more details, and watch for our full paper soon.

Don’t worry, the key for your bank’s web site is probably

safe

New research: There's no need to panic over fact... about:reader?url=https://freedom-to-tinker.com/...

2 of 11 5/16/19, 9:59 PM



SSL is used to authenticate every major web site on the

Internet, but in our analysis, these were not the keys that were

vulnerable to the problems outlined in this blog post.

So which systems are vulnerable? Almost all of the vulnerable

keys were generated by and are used to secure embedded

hardware devices such as routers and firewalls, not to secure

popular web sites such as your bank or email provider. Only

one of the factorable SSL keys was signed by a trusted

certificate authority and it has already expired. There are

signed certificates using repeated keys; some of them are

generated by vulnerable devices, some of them are due to

website owners submitting known weak keys to be signed, and

for some of them we have no good explanation.

Embedded devices are well known to have entropy problems.

However, until now it wasn’t apparent how widespread these

problems were in real, Internet-connected devices.

Background: key generation

Websites and networked computers use public-key

cryptography for authentication. The kind of authentication that

we will be talking about here is a server certifying to a client

that it really is the server that the client intended to connect to.

An attacker who knows the private key to one of these

systems would be able to impersonate the real system to a

client or in many cases decrypt encrypted traffic between the

client and server.

The most widely used cryptosystem for this purpose is RSA.

New research: There's no need to panic over fact... about:reader?url=https://freedom-to-tinker.com/...

3 of 11 5/16/19, 9:59 PM



The RSA cryptosystem is intended to be based on the difficulty

of factoring large numbers. An RSA public key consists of a

pair of integers: an encryption exponent e and a modulus N,

which is a large integer that itself is the product of two large

primes, p and q. If an adversary can factor this integer N back

into its prime factors p and q, then the adversary can decrypt

any messages encrypted using this public key. However, even

using the fastest known factoring algorithm, to public

knowledge nobody has yet been able to factor a 1024-bit RSA

modulus.

It is vitally important to the security of the keys that they are

generated using random inputs. If the inputs used to generate

the keys were not random, then an adversary may be able to

guess those inputs and thus recover the keys without having to

laboriously factor N.

On modern computers and servers, key generation software

attempts to collect random information from physical sources

(often through the underlying operating system): the

movements of the mouse, keyboard, hard drive, network

events, and other external sources of unpredictable

information. However, if the keys are generated from a small

set of possibilities, that is, using too little entropy, then the keys

may be vulnerable to an attacker. Gathering strong entropy

and verifying its strength is a very difficult problem that has

given rise to multiple vulnerabilities over the years.

Two versions of the problem

New research: There's no need to panic over fact... about:reader?url=https://freedom-to-tinker.com/...

4 of 11 5/16/19, 9:59 PM



We decided to investigate the prevalence of this issue by

scanning the Internet for all SSL and SSH public keys. We

scanned every IPv4 address on the Internet, collecting a copy

of each SSL certificate and SSH host key. We were able to

complete both scans in less than a day: we first used a

standard tool called nmap to find hosts with the relevant ports

open, and then used our own optimized software to query

those hosts. In our SSL scan, we collected 5.8 million

certificates. In our SSH scan, we collected 10 million host

keys.

We found that entropy problems resulted in two different types

of weaknesses:

Repeated public keys. We found that 1% of the RSA keys in

our SSL scan data were repeated, apparently due to entropy

problems. When two different devices have the same public

key, it means they also have the same private key. In effect,

the devices that share keys are “in the same boat” as one

another–an attacker would only need to compromise the

weakest one of these devices, in order to obtain the repeated

private key that protects all of the devices. This has long been

a known problem, but until now, none of the publicly available

security literature has documented how widespread the

problem was.

We manually verified that 59,000 duplicate keys were repeated

due to entropy problems, representing 1% of all certificates, or

2.6% of self-signed certificates. We also found that 585,000

New research: There's no need to panic over fact... about:reader?url=https://freedom-to-tinker.com/...

5 of 11 5/16/19, 9:59 PM



certificates, or 4.6% of all devices used the default certificates

pre-installed on embedded devices. While these devices are

not using keys generated with poor entropy, they are

suspectible to the same attack as their private keys are found

on every device of a given model. We manually verified these

keys because a large number of websites may utilize repeated

keys for legitimate reason; these provide no risk to users.

Factorable public keys. More surprisingly, we discovered that

entropy problems can allow a remote attacker with no special

access to factor a significant fraction of the RSA keys in use

on the Internet. We were able to factor 0.4% of the RSA keys

in our SSL scan. We did this by computing the greatest

common divisor (GCD) of all pairs of moduli from RSA public

keys on the Internet.

We identified 1724 common factors which allowed us to factor

24,816 SSL keys, and 301 common factors which allowed us

to factor 2422 SSH host keys. This means we were able to

calculate the private keys for almost half of 1% of the RSA

keys in use for SSL. We will explain how we did this

calculation below.

Specific vulnerable devices

Embedded devices often generate cryptographic keys on first

boot, when their entire state may have been pre-determined in

the factory. This can result in the kinds of entropy problems we

observe in this study.

We were able to use information from the SSL certificates to

New research: There's no need to panic over fact... about:reader?url=https://freedom-to-tinker.com/...

6 of 11 5/16/19, 9:59 PM



identify classes of devices that are prone to generating weak

keys. Many more devices than the ones whose keys we

factored are probably also producing weak keys that could be

compromised by a determined attacker. The list of vulnerable

devices that we have already identified includes more than

thirty different manufacturers, including almost all of the

biggest names in the computer hardware industry. The kinds

of products that we identified include firewalls, routers, VPN

devices, remote server administration devices, printers,

projectors, and VOIP phones.

We’re not going to list specific devices or brands until we’ve

told the manufacturers, but here are some examples:

Firewall product X:

52,055 hosts in our SSL dataset

6,730 share public keys

12,880 have factorable keys

Consumer-grade router Y:

26,952 hosts in our SSL dataset

9,345 share public keys

4,792 have factorable keys

Enterprise remote access solution Z:

1,648 hosts in our SSL dataset

24 share public keys

0 factorable

How could this happen?

New research: There's no need to panic over fact... about:reader?url=https://freedom-to-tinker.com/...

7 of 11 5/16/19, 9:59 PM



It wasn’t obvious at first how these types of entropy problems

might result in keys that could be factored. We’ll explain now

for the geekier readers.

Here’s one way a programmer might generate an RSA

modulus:

prng.seed(seed)

p = prng.generate_random_prime()

q = prng.generate_random_prime()

N = p*q

If the pseudorandom number generator is seeded with a

predictable value, then that would likely result in different

devices generating the same modulus N, but we would not

expect a good pseudorandom number generator to produce

different moduli that share a single factor.

However, some implementations add additional randomness

between generating the primes p and q, with the intention of

increasing security:

prng.seed(seed)

p = prng.generate_random_prime()

New research: There's no need to panic over fact... about:reader?url=https://freedom-to-tinker.com/...

8 of 11 5/16/19, 9:59 PM



prng.add_randomness(bits)

q = prng.generate_random_prime()

N = p*q

If the initial seed to the pseudorandom number generator is

generated with low entropy, this could result in multiple

devices generating different moduli which share the prime

factor p and have different second factors q. Then both moduli

can be easily factored by computing their GCD: p = gcd(N1,

N2).

OpenSSL’s RSA key generation functions this way: each time

random bits are produced from the entropy pool to generate

the primes p and q, the current time in seconds is added to the

entropy pool. Many, but not all, of the vulnerable keys were

generated by OpenSSL and OpenSSH, which calls OpenSSL’s

RSA key generation code.

Computing the GCDs of all pairs of keys

If any pair of RSA moduli N1 and N2 share, say, the same

prime factor p in common, but have different second factors q1

and q2, then we can easily factor the moduli by computing

their greatest common divisor. On my desktop computer,

computing the GCD of two 1024-bit RSA moduli took about

17µs.

New research: There's no need to panic over fact... about:reader?url=https://freedom-to-tinker.com/...

9 of 11 5/16/19, 9:59 PM



For the mathematically inclined, I’ll explain how we were able

to use this idea to factor a large collection of keys.

The simplest way that one might try to factor keys is by

computing the GCD of each pair of RSA moduli. A back of the

envelope calculation shows that doing a GCD computation for

all pairs of moduli in our data sets would take 24 years of

computation time on my computer.

Instead, we used an idea Dan Bernstein published in the

Journal of Algorithms in 2005 for factoring a group of integers

into coprimes which allowed us to do the computation in a few

hours on a desktop computer, in a few lines of Python. The

algorithm is no great secret: a long stream of published papers

has worked on improving these ideas.

The main mathematical insight is that one can compute the

GCD of a single modulus N1 with every other modulus

N2,…,Nm using the following equation:

gcd(N1,N2…Nm) = gcd(N1, (N1*N2*…*Nm mod N1
2)/N1)

The secret sauce is in making this run fast–note that the first

step is to compute the product of all the keys, a 729 million

digit number. We were able to factor the SSL data in eighteen

hours on a desktop computer using a single core, and the

SSH data in about four hours using four cores.

The bottom line

This is a problem, but it’s not something that average users

need to worry about just yet. However, embedded device

New research: There's no need to panic over fact... about:reader?url=https://freedom-to-tinker.com/...

10 of 11 5/16/19, 9:59 PM



manufacturers have a lot of work to do, and some system

administrators should be concerned. This is a wake-up call to

the security community, and a reminder to all of how security

vulnerabilities can sometimes be hiding in plain sight.

New research: There's no need to panic over fact... about:reader?url=https://freedom-to-tinker.com/...

11 of 11 5/16/19, 9:59 PM


