
restic: Backups done right

Brian DeLacey, BLU @ MIT
February 15, 2017

About Brian …
Brian worked for a number of years at Lotus Development and IBM in different
roles within the development community. He’s also worked in the research area
at Harvard Business School.

Brian was an early adopter of the Mac, past Executive Director of the Macintosh
User Group, and long-time member of the Boston Computer Society.

Brian has worked on mainframes, minis, micros, PCs, and IoT Devices in a variety
of languages, across a number of operating systems.

Brian’s recent activities involve Go and network-ware.

Welcome to restic

What do users want?

Users don’t want to do backups.

Users want to do restores!

restic Design Principles
Easy

Fast

Verifiable

Secure

Efficient

Free

Security Threat Model
The design goals for restic include being able to securely store backups in a
location that is not completely trusted, e.g. a shared system where others can
potentially access the files or (in the case of the system administrator) even
modify or delete them.

General assumptions: The host system a backup is created on is trusted. This
is the most basic requirement, and essential for creating trustworthy backups.

Source: https://restic.readthedocs.io/en/stable/Design/

restic Highlights - "Backups done right!"
Restic is licensed under "BSD 2-Clause License".

Open source written in Go

Latest Version as of this talk is v0.4.0 (2017-02-02)

● Binaries available and also Debian Package

Smart - deduplication, backward compatibility of all repositories within one major version

Lead Author / Creator / Developer

● Alexander Neumann, https://github.com/fd0
● Aachen, Germany

https://github.com/restic/restic/releases/tag/v0.4.0
https://packages.debian.org/sid/main/restic
https://github.com/restic/restic/releases/tag/v0.4.0
https://github.com/fd0

Go Sidebar...
● Aka golang, is free and open source language created by Google
● Development began in 2007 Robert Griesemer, Rob Pike, Ken Thompson
● First appeared in the wild in November 10, 2009
● Runs mostly everywhere - aims to be productive, readable
● Compiled (fast), concurrent, imperative, structured, scalable
● Discipline is strong, typed, statically typed, inferred, structural
● Built-in garbage collection, with support for networking, multiprocessing
● Interface system (rather than virtual inheritance)
● Remote package management
● Language Tools (go build, go test, go fmt, go get, go run, godoc etc.)

Go Versions… sudo apt-get install golang-go
Go 1.8 (Expected early 2017)
Go 1.7 (August 2016)
Go 1.6 (February 2016)
Go 1.5 (August 2015)
Go 1.4 (December 2014)
Go 1.3 (June 2014)
Go 1.2 (December 2013)
Go 1.1 (May 2013)
Go 1 (March 2012)

https://golang.org/project/ and you can download here https://golang.org/dl/

https://golang.org/project/
https://golang.org/dl/
https://golang.org/project/

restic Authorship
Alexander Neumann, https://github.com/fd0, Germany

https://github.com/fd0

restic Lightning Talk
2015-02-01: Lightning Talk at FOSDEM 2015: A short introduction (with slightly
outdated command line)

https://youtu.be/oM-MfeflUZ8?t=11m49s

https://youtu.be/oM-MfeflUZ8?t=11m49s
https://youtu.be/oM-MfeflUZ8?t=11m49s
https://youtu.be/oM-MfeflUZ8?t=11m49s

Quickstart
A short recorded demo of restic

$restic -r /tmp/restic-repo init
enter password for new backend:
enter password again:
Created restic backend NNNNNNNN at /tmp/restic-repo

Please note that knowledge of your password is required …
Losing your password means that your data is irrecoverably
lost.

$ls -al
$restic -r /tmp/restic-repo backup .
Enter password for repostiory:

Source: https://restic.github.io/

Flow
1. Init repository
2. Backup files / directories / lists (with optional tags)
3. Snapshot history
4. Restore
5. Forget (policy qualifications) then periodically Prune
6. Check (for integrity)

Common Commands - For Backup and Restore
$./restic --help

$./restic init --repo /tmp/backup (Initialize a repository)

$./restic -r /tmp/backup backup ~/work (create snapshot at point in time - ie. backup data)

$./restic -r /tmp/backup backup ~/work.txt (backup individual file)

$./restic -r /tmp/backup snapshots (list all snapshots)

$./restic -r /tmp/backup snapshots --path="/srv" (filter by path name)

$ restic -r /tmp/backup restore 79766175 --target ~/tmp/restore-work

$ restic -r /tmp/backup check (check integrity and consistency)

Common Commands - Forgetting and Pruning
$ restic -r /tmp/backup snapshots
enter password for repository:
ID Date Host Tags Directory
--
40dc1520 2015-05-08 21:38:30 kasimir /home/user/work
79766175 2015-05-08 21:40:19 kasimir /home/user/work
bdbd3439 2015-05-08 21:45:17 luigi /home/art

$ restic -r /tmp/backup forget bdbd3439 (removes references to data)

$ restic -r /tmp/backup prune (required to cleanup unreferenced data)

Fancy Command - Exclude
Exclude folders / files by specifying exclude patterns

$ cat exclude
exclude go-files
*.go
exclude foo/x/y/z/bar foo/x/bar foo/bar
foo/**/bar
$ restic -r /tmp/backup backup ~/work --exclude=*.c --exclude-file=exclude

Source: https://restic.readthedocs.io/en/latest/Manual/

Fancy Command - Filter and choose from File
backup files that have a certain filename in them

$ find /tmp/somefiles | grep 'PATTERN' > /tmp/files_to_backup

use restic to backup the filtered files

$ restic -r /tmp/backup backup --files-from /tmp/files_to_backup

combine --files-from with the normal files args

$restic -r /tmp/backup backup --files-from /tmp/files_to_backup /tmp/some_additional_file

Fancy Command - Tags
Snapshots can have one or more tags, short strings which add identifying
information. Just specify the tags for a snapshot with --tag

$ restic -r /tmp/backup backup --tag projectX ~/shared/work/web
[...]

Advanced Commands (we won’t cover them all...)
Mount a repository and browse backup as a regular file system (via FUSE)

Create an SFTP repository (set up SSH server, use the URL scheme with init)

● $ restic -r sftp:user@host:/tmp/backup init

Create a REST server repository (backup via HTTP or HTTPS)

Create an Amazon S3 repository

Create a Minio Server repository

$ restic -r /tmp/backup list snapshots (blobs, packs, index, snapshots, keys or locks)

Removing snapshots according to a policy (This we do cover … in the next slide)

How to run backups on a schedule?
You can use a cron job but the question becomes how to pass the password?

The environment variable RESTIC_PASSWORD allows you to set the password
for the automated backup process. This is documented in the manual here
http://restic.readthedocs.io/en/latest/Manual/#initialize-a-repository

Since environment variables may be shown in the ps outputs, which may
sometime sbe written to log files for diagnostic reasons, having the password
in a env variable isn’t always the best. So they added a feature to store the
password in a file https://github.com/restic/restic/issues/278 and also here
https://github.com/restic/restic/pull/613

Source: https://github.com/restic/restic/issues/519

http://restic.readthedocs.io/en/latest/Manual/#initialize-a-repository
http://restic.readthedocs.io/en/latest/Manual/#initialize-a-repository
https://github.com/restic/restic/issues/278
https://github.com/restic/restic/pull/613
https://github.com/restic/restic/pull/613

Policy
command-line parameter --dry-run (print which snapshots would be removed)

The forget command accepts the following parameters:

--keep-last n (never delete the n last - most recent - snapshots)
--keep-hourly n (for last n hours a snapshot was made, keep only the last snapshot for each hour)
--keep-daily n (for last n days which have one or more snapshots, keep last one for that day)
--keep-weekly n (for last n weeks, keep the last one for that week)
--keep-monthly n (for last n months which have one or more snapshots, keep the last one for month)
--keep-yearly n (for last n years which have one or more snapshots, keep the last one for year)
--keep-tag (keep snapshots with all tags specified by this option-can be specified multiple times)

Version History
v0.4.0 (2017-02-02) Begins shipping pre-compiled binaries

● Restic Release Page: https://github.com/restic/restic/releases/tag/v0.4.0

v0.3.3 (2017-01-08) Maintenance

v0.3.2 (2016-12-18)

v0.3.1 (2016-12-13)

v0.3.0 (2016-10-02)

v0.2.0 (2016-07-30)

v0.1.0 (2015-08-21) First public release of restic (1122 commits to master since this first public release)

Debian Package: https://packages.debian.org/sid/main/restic

Building restic
“restic is written in the Go programming language and you need at least Go
version 1.6. Building restic may also work with older versions of Go, but that's
not supported. See the Getting started guide of the Go project for instructions
how to install Go.”

In order to build restic from source ...

Build restic yourself
$ git clone https://github.com/restic/restic
[...]

$ cd restic

$ go run build.go

Design Principle - Easy
Easy: Doing backups should be a frictionless process, otherwise you might be
tempted to skip it. Restic should be easy to configure and use, so that, in the
event of a data loss, you can just restore it. Likewise, restoring data should not
be complicated.

https://github.com/restic/restic/blob/master/doc/index.md

Design Principle - Fast
Fast: Backing up your data with restic should only be limited by your network
or hard disk bandwidth so that you can backup your files every day. Nobody
does backups if it takes too much time. Restoring backups should only
transfer data that is needed for the files that are to be restored, so that this
process is also fast.

https://github.com/restic/restic/blob/master/doc/index.md

Design Principle - Verifiable
Verifiable: Much more important than backup is restore, so restic enables you
to easily verify that all data can be restored.

https://github.com/restic/restic/blob/master/doc/index.md

Design Principle - Secure
Secure: restic uses cryptography to guarantee confidentiality and integrity of
your data. The location the backup data is stored is assumed not to be a
trusted environment (e.g. a shared space where others like system
administrators are able to access your backups). Restic is built to secure your
data against such attackers.

https://github.com/restic/restic/blob/master/doc/index.md

Design Principle - Efficient
Efficient: With the growth of data, additional snapshots should only take the
storage of the actual increment. Even more, duplicate data should be
de-duplicated before it is actually written to the storage back end to save
precious backup space.

https://github.com/restic/restic/blob/master/doc/index.md

Design Principle - Free
Free: restic is free software and licensed under the BSD 2-Clause License and
actively developed on GitHub.

https://restic.github.io/

Compatibility?
Backward compatibility for backups is important so that our users are always able to restore saved
data. Therefore restic follows Semantic Versioning to clearly define which versions are compatible.
The repository and data structures contained therein are considered the "Public API" in the sense of
Semantic Versioning. This goes for all released versions of restic, this may not be the case for the
master branch.

We guarantee backward compatibility of all repositories within one major version; as long as we do
not increment the major version, data can be read and restored. We strive to be fully backward
compatible to all prior versions.

https://github.com/restic/restic/blob/master/doc/index.md

restic Trivia
Joe Restic was the longest-serving football coach at Harvard

His idea? Restic’s 2011 obituary in the NY Times

“create doubt in the best athletes,” as Restic once put it.

References
1. restic Introduction - https://restic.github.io/
2. Restic design document - https://restic.readthedocs.io/en/stable/Design/
3. GitHub Source

○ https://github.com/restic/restic
4. Manual - overview of the basic functionality provided by restic

○ https://restic.readthedocs.io/en/latest/Manual/
5. Documentation for restic

○ https://restic.readthedocs.io/en/latest/
6. GoDocs - https://godoc.org/github.com/howeyc/restic
7. Lightning Talk - Why another backup program?

https://restic.github.io/
https://restic.readthedocs.io/en/stable/Design/
https://github.com/restic/restic
https://github.com/restic/restic
https://restic.readthedocs.io/en/latest/Manual/
https://restic.readthedocs.io/en/latest/Manual/
https://godoc.org/github.com/howeyc/restic

Q & A

Thank you!

Questions?

