
Presents

Introduction by Massimo Morin (mmorin@schedsys.com)
September 15, 1999

mailto:mmorin@schedsys.com

Organization

Slide base seminar (30-40 min)

Introduction to debugging

outline principal part of DDD

functionality

Live usage work bench (20-30 min)

basic commands

interaction

usage impressions

Q&A session (till fall asleep ;))

Agenda

Debugging

GDB and DDD

Usage

Structure

IDE capability?

Pros & Cons

Conclusion

Aargh a bug!

If debugging is the process of removing bugs,
then programming must be

the process of putting them in...

[from slashdot.org]

A Program behavior

Program/process: a series of manipulation
of inputs that creates and modifies the
program internal state for generating some
output

What is a bug?

The input could not be the proper one

The manipulation (actions) are not performed in the
desired order

The actions are plain wrong

This implies

The state is unfeasible (core dump) or inconsistent

Results

The output is not the desired one.

Needs for a Debugger:
The Debugging objectives

Modify the input

Inspect the internal state

Modify the internal state

Change instructions execution

order

skip, apply again different instructions

Results

Fix the output to be the desired one

What is GDB

It is a debugger (GNU Debugger):

starts program

conditional stopping

examine variable contents

change "things" on program for experimentation

Supports C, C++ and Modula-2

Line oriented program

What is DDD (and what it is not)

It is NOT a debugger

Graphical interface to a debugger

supports different debugger in back end (different
languages)

Displays source code and allows manipulation of
execution positions

Display data contents (state) in a graphical way

and much more...

DDD and db interrelation

Why using DDD

We are lazy

Facilitate access to db commands

Easy access source file

Context sensitive help

highly configurable (debugger and interface)

Constant view of the program state

undo/redo, history command

Session manager

Integration with other tools

Technical Specification

Born in Germany as a Data Display

Open Source Project (GPL): current version 3.1.6

C++ and Motif program

Retrieve Source code (compiles with Motif 1.2 and
LessTif 0.85) ~ 3.6Mb

Retrieve binary file:
Static: statically linked to all library (4.1Mb)

Semistatic: statically linked only to Motif (2.4Mb)

Dynamic: all library dinamic (2.1Mb)

Invoking DDD

Stand alone (ddd)

Full debugging (ddd program)

Attached to a running program (ddd program id)

Remote debugging (ddd --rhost)

Integrate into emacs (ddd --tty)

The program to debug has to have symbolic
information in it (g++ -g program)!

Structure

Three windows: console, data
and source window

Additional windows:
execution, command tool
and machine code one

Windows can be stacked or
separated

Menu and toolbar in every
window

The Console Window

Main menu access

Direct interaction with the debugger

Direct command for DDD

Output of the program (if not using output win)

Functionality:

history

undo/redo

tab completion

The Source Window

Show the source code

Command Tool

Machine code source

Access to

Breakpoints (cond, all)

Backtrace

Registers

Threads

Signals

The Source Window (2)

Execution Position Arrow functionality

Status bar

Status bar indicator

Functionality

Variable access (print, display, lookup)

Value hints

Lookup functions

Search words

The Display Window

Specific variable contents

Local, global, parameters variable view

Linked list, graph, tree view

Variable clustering

Incremental clustering view

Vector view and rotation

Automatic pointer de-reference

Memory contents

The Display Window (2)

Easy access to variable via pop-up menu

Multiple format view (hex, oct...)

Shortcut for frequent data request

Display, un-display and value settings

Panned and scroll bar view

Automatic indentation and alignment

Alias detection

Advanced printing capability

Data Window (3)

Advanced Functions

Session manager

Data plotting capability

Command definition (Macro)

Button editing

Extensive configuration (DDD and db)

Memory dumping

Is it an IDE?

Source editing

Compilation capability

Debugging centric:

need reloading and restarting

out of sync problems

..so is it and IDE? Sort of...

Pro & Cons

Cover major db
weakness (total status
control)

Always evolving (open
source project)

Multiplatform (all unixes
and windows)

Debugger independent

Very stable

Bit slow (due to command
interpretation)

Bit fat (due to Motif,
memory leaks(?))

Text highlight missing

Too sensitive to back end
debugger problems

Conclusions

Used for more than 2 years:

Very easy to use (smooth learning curve)

Forgot almost command line db usage (no need of it)

Accessed hidden and complicated db capability

Very useful (cut down 50% debugging time)

community ready to solve problem

widely used

Worth a try!

References

Andreas Zeller: http://www.cs.tu-bs.de/~zeller/

DDD homepage: http://www.cs.tu-bs.de/softech/ddd/

Mailing List: ddd-users@ips.cs.tu-bs.de

Other programs:

Kdevelop: http:/www.kdevelop.org

Debugging Tools for Dynamic Storage Allocation and
Memory Management.
http://www.cs.colorado.edu/homes/zorn/public_html/MallocDebug.html

Linux Development Software
http://members.home.net:80/davecook/devel/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

