Python for System Administration

Jerry Feldman

Boston Linux and Unix

Portions of this presentation have been borrowed with permission from Jonathan Voris, Columbia
University

Background

* |'ve worked as a computer programmer/software
engineer almost continually since 1972. | have
experience developing applications and system
software in C/C++, Python, TCL/TK, shell scripting
and FORTRAN.

| first got into Python at work where someone
produced a module that tied into our product. At
the time | had a program on the BLU server that
extracted user names and passwords from mailman
and converted them to htpasswords on the web
server so the websites associated with the listservs
could have private members-only sections. Our first
cut was JABR wrote it as a Perl script, but it ran to
slow. | rewrote as a C++ program which was
acceptable, but rewriting it in Python was a
significant time savings B&¢alise it"¢ ouldrerc cens
mailman structures directly.

Overview

Python was developed by Guido van Rossum at Centrum
Wiskunde & Informatica (CWI) in the 1980s and first published
in 1991.

Guido has the title of "Benevolent Dictator For Life" (BDFL)

Python has been used in many applications from some of the
Red Hat systems administration scripts to major applications
such as mailman.

It is effective both as an ad-hoc script as well as an object-
oriented programming language.

Please feel free to interrupt and ask questions at any
time.

Boston Linux and Unix December 18, 2013

What 1s Python

- Interpreted, Interactive, Object-
Oriented

- Actually modules get compiled (talk
about later)

= Multi-paradigm, yet sparse syntax
= PythonicPhilosophy:

- Do the simplest thing that can possibly
work

- Correctness and clarity before speed
e FUIly Open SourceBoston Linux and Unix December 18, 2013

Syntactical Summary

- Indentation or “the whitespacething”

- |Indentation is used to delineate blocks of
code similar to the use of the curly
braces in C/C++. This actually makes
the code naturally more readable.

- Many built-in data types such as

strings, lists, tuples, maps,

dictionaries

- Dynamic typing
» Everything is an object.....

December 18, 2013

Some very nice shortcuts

- Python has a neat shortcut for lists
and dictionaries called
comprehensions

= List comprehensions provide a
concise way to create lists. Common
applications are to make new lists
where each element is the result of
some operations applied to each
member of another sequence or
iterable, or to create a sybsequence
of those elements that satisfy s ="

List comprehesion example

>>> squares = []
>>> for x in range(10):
squares.append(x**2)

>>> squares
[0, 1, 4,9, 16, 25, 36, 49, 64, 81]
The above can be done as:

>>> squares = [x**2 for X In
ra n g e(1 O)] Boston Linux and Unix

December 18, 2013

Couldn't resist this

"Don't use Perl;

it's counter-) "Strive for excellence
“Long live the) in modules!”
struggle against
bracist imperial-
ism!"

Python Modules

- Python code organized into modules
= Large built-in standard library

- Several standard modules helpful for
system programming

Python Standard Library

- Python has 2 major versions, Python
2 and Python 3. The largest body of
code is Python 2.n.

he following slides list a few of the
many useful modules included with a
Python distribution.

Boston Linux and Unix December 18, 2013

10

http://docs.python.org/2/library/
http://docs.python.org/3/library/

Python Modules: sys

System-specific parameters and

functions
Allows for interpreter interaction

- Get command line arguments:
sys.argv

- Exit the program:
sys.exit([arg])

- Redirect stdout:

class FileFaker: #Define a clase
def write(self, string): # define a function
In that class
#Use the string
sys.stdout= FileFaker() # Use that class
print someObject

Boston Linux and Unix December 18, 2013

11

Python Modules: 0S

Miscellaneous operating system
interfaces
= Imports an OS-specific module (posix,

nt, mac, etc)

= 0S.environ - Dictionary containing
environment variables.

- Modify the file system:
- 0s.mkdir("test")
- os.rmdir("test")

Boston Linux and Unix December 18, 2013

12

Python Modules:
subprocess

BYBRLASHS R MANAGEMENT
wait for completion.

subprocess.popen() - The popen class
allows you to call a process in the
background.

Example to source a BASH script into
0s.environ:

Source the environment

def source(self, script): #this is a method in a class in this case
source the script and print env(1) to stdout
pipe = subprocess.Popen(". %s; env" % script,
stdout=subprocess.PIPE, shell=True)
data = pipe.communicate()[0] # grab the output.

convert it into a py dictionary B&BQLW{RQEderKﬂOVgQCGar%ber 18, 2013
comprehension

env = dict((line.split("=", 1) for line in data.splitlines()))

13

Python Modules:re
Regular Expression

oBenations ,
- Modeled on perl'soperations, with an

OO twist
- Create a regexobject:
regex= re.compile('[a-z]+")
- Perform a search:
matches = regex.search(strfToSearch)
- Get results:
print matches.group()
print matches.start(), matches.end()

Boston Linux and Unix December 18, 2013

14

Some other modules I use
frequently

= datetime — Basic date and time types

= glob — Unix style pathname pattern
expansion

= csv — CSV File Reading and Writing
= ConfigParser — Configuration file parser

= getopt — C-style parser for command line
options

= Tkinter (and TIX) — Python interface to
Tcl/Tk

= pydoc — Documentation generator and
Online help System Boston Linux and Unix 1o e 18 2013

IIV'II:L'\I nV\I\V'\ '\FL\:"'V"‘\V‘\I ["l ol oV B B o ol o al L‘\\l IIDI

15

Python vs. Other examples

= Simple programming task -count the
number of times a string occurs in a
file

- How do the solutions in different
languages compare?

Boston Linux and Unix December 18, 2013

16

Python Source

1.fileName= "cleesebio.txt"
2.strToFind= "Cleese"

3.

4 try:

5.fileObject= open(fileName)
6.except:

7.print "Unable to open file " + fileName+ "."
8.sys.exit(1)

9.

10.occurances= 0

11.try:

12.for line in fileObject:
13.occurances+= line.count(strToFind)
14 finally:

15.fileObject.close()

16.

Pros:
Extremely clear
Fast to code
Objects make life easier
Cons:
A little on the slow side
Could be more concise

17.print "The string " + strToFind+ " occurs " + str(occurances) + " times in the file " + fileName+

Boston Linux and Unix December 18, 2013

17

VS. C

1.#include <stdio.h>

2.

3.intmain() {

4.FILE *infile;

5.char *fileName= "cleesebio.txt";
6.char *strToMatch= "Cleese";
7.intnumMatches= 0;

8.

9.if((infile= fopen(fileName, "r")) == NULL)
10.{

11.printf("ErrorOpening File.\n");
12.exit(1);

13.}

14.

15.char *cur;

16.while(fgets(cur, 2, infile) '= NULL)
17.{

18.if (*cur == strToMatch[0])

19.4

20.fgets(cur, 6, infile);

21.if (strcmp(cur, &strToMatch[1]) == 0)
224

23.numMatches+=1;
24.printf("|%i|%s|\n", numMatches, cur);
25.}

26.}

27.}

28.printf("Thestring %s occurs %i times in the file %s.\n", strToMatch, numMatches, fileName);
29.fclose(infile);

30.}

Pros:

Super fast

Very fine grain control
Cons:

Need to compile

Way too much code

Pointers make Jon sad, but |
like pointers but | am a C guy

Boston Linux and Unix December 18, 2013

18

vs. BASH

1.fileName="cleesebio.txt"
2.strToFind="Cleese"
3.occurrences=(tr" " "\n" < $fileName| grep$strToFind| wc-w)

4.echo "The string $strToFindoccurs $occurrences times in the
file $fileName."

Pros:
Extremely concise -only four
lines of code!

Cons:
Requires three separate
function calls. (echo is a
builtin)
Took Jon three hours to write

Boston Linux and Unix December 18, 2013
19

vs. Perl

1.$fileName= "cleesebio.txt";

2.$strToFind= "Cleese"; Pros:

3. Moderately concise
4.local 3/; | . _Also fast to code
E_z.open SLURP, $fileNameor die "can't open $file: $! Very flexible syntax
7.$data = <SLURP>; Cons:

8 Interpreted slowness
9.if (@matches = $data =~ /$strToFind/g) Hard to read —what
10.{ exactly is happening
11.$numMatches= @matches; here?

12.print "The string $strToFindoccurs $numMatchestimes in the file
$fileName.\n";

13.}

14. _ .
Boston Linux and Unix

15.close SLURP or die "cannot close $file: $!"; December 18, 2013

20

Some personal comments

Several years ago JABR wrote some
code in either BASH or Perl to convert
mailman users+passwords to
htpasswords and it took about an hour

to run.
- | rewrote that in C++ and it was much faster.

- | rewrote that in Python and it was faster by a
factor of 10, not because Python is faster than
C++ but because mailman is written in Python
and | could access mailman's structures where C
and Perl required some very slow function calls.
Also, the Paramiko Python library made it easier

oston Linux an

to push the htpasswords over to th&othief ***

machinoa

Some personal comments

= Personally, | find Python easy to learn since | know

both BASH and C and C++ and regularly code in
these.

Python is very readable and includes a
number of features to easily document.

= At work | had a bash script to manage all of
our servers, but | then created it in TCL/TK,
and then in Python. | modified this script
for the BLU servers, and I'll demo it. now.

Boston Linux and Unix December 18, 2013
22

Some additional features

- Extending and Embedding the Python
Interpreter - This is a way to extend
Python and link Python to C/C++
code.

* Python has a well documented C/C+
+ API

- Python has a number of graphics
Interfaces including QT, wxWidgets
(GTK), and others like Tkinter, GTK+,

a n d O pe n G L- Boston Linux and Unix

December 18, 2013

23

And Finally — almost time
for CBC

Python IS

- Object Oriented (if you want to)
- Versatile (very)
- Clear and readable

- Fun. | really enjoyed adapting several existing
TCL and BASH applications to Python

- Stands up against the competition. While Python
IS Interpretive it also is compiled (see the .pyc
and .pyo files)

- Large standard library is well suited for System
Administration

See for,more information

December 18, 2013

24

http://python.org/

	Virtualization on the Desktop
	Background
	Overview
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20
	page21
	page22

