
Functional Package and
Configuration Management with
GNU Guix

David Thompson

Wednesday, January 20th, 2016

About me

GNU project volunteer

GNU Guile user and contributor since 2012

GNU Guix contributor since 2013

Day job: Ruby + JavaScript web development / “DevOps”

2

Overview

• Problems with application packaging and deployment

• Intro to functional package and configuration
management

• Towards the future

• How you can help

3

User autonomy and control

It is becoming increasingly difficult to have control over your
own computing:

• GNU/Linux package managers not meeting user needs

• Self-hosting web applications requires too much time and
effort

• Growing number of projects recommend installation via
curl | sudo bash 1 or otherwise avoid using system
package managers

• Users unable to verify that a given binary corresponds to
the source code

1http://curlpipesh.tumblr.com/

4

http://curlpipesh.tumblr.com/

User autonomy and control

“Debian and other distributions
are going to be that thing you
run Docker on, little more.” 2

2“ownCloud and distribution packaging”
http://lwn.net/Articles/670566/

5

http://lwn.net/Articles/670566/

User autonomy and control

This is very bad for desktop users and system administrators
alike. We must regain control!

6

What’s wrong with Apt/Yum/Pacman/etc.?

Global state (/usr) that prevents multiple versions of a
package from coexisting.

Non-atomic installation, removal, upgrade of software.

No way to roll back.

Nondeterminstic package builds and maintainer-uploaded
binaries. (though this is changing!)

Reliance on pre-built binaries provided by a single point of
trust.

Requires superuser privileges.

7

The problem is bigger

Proliferation of language-specific package managers and binary
bundles that complicate secure system maintenance.

8

Web applications

Web applications are particularly painful.

9

Web applications

It’s common for today’s web applications to require two or
more package managers to get all dependencies.

10

Web applications

Importing a web application available only for a
language-specific manager into a distribution proves difficult.
NodeJS is particularly frightening. 3

3“Let’s Package jQuery: A Javascript Packaging Dystopian Novella”
http://dustycloud.org/blog/javascript-packaging-dystopia/

11

http://dustycloud.org/blog/javascript-packaging-dystopia/

Web applications

There’s a growing number of popular web applications
(Hadoop, Chef Server, Cloudera, etc.) that no one knows how
to build from source! 4

4“Your big data toolchain is a big security risk!”
http://www.vitavonni.de/blog/201504/
2015042601-big-data-toolchains-are-a-security-risk.html

12

http://www.vitavonni.de/blog/201504/2015042601-big-data-toolchains-are-a-security-risk.html
http://www.vitavonni.de/blog/201504/2015042601-big-data-toolchains-are-a-security-risk.html

Deployment

How do we automate application deployment without going
crazy?

13

Chef/Puppet/Ansible/etc. are pretty good, right?

Building on top of mainstream package managers and distros
yields an unstable foundation.

14

Problems with configuration management
software

• Imperative config management is overly-complex and
brittle (idempotence is hard)

• More reliable builds require spawning new machines and
building from scratch each time. (sledgehammer)

• Made primarily for developers for server maintenance, but
all types of users could benefit.

15

Docker?

Surely Docker addresses these issues?

16

Docker?

I’m afraid not.

17

Problems with Docker

• Still imperative (though resulting images are immutable)

• Dockerfile DSL is not expressive

• Promotes one disk image per application to cover up
underlying package management mess 5

• No provenance

• Image layering is an ineffective caching strategy

• Does not compose (what about the host?)

5“The sad state of sysadmin in the age of containers”
http://www.vitavonni.de/blog/201503/
2015031201-the-sad-state-of-sysadmin-in-the-age-of-containers.
html

18

http://www.vitavonni.de/blog/201503/2015031201-the-sad-state-of-sysadmin-in-the-age-of-containers.html
http://www.vitavonni.de/blog/201503/2015031201-the-sad-state-of-sysadmin-in-the-age-of-containers.html
http://www.vitavonni.de/blog/201503/2015031201-the-sad-state-of-sysadmin-in-the-age-of-containers.html

Problems with Docker

Reliance on DockerHub binaries proves to be insecure 6

6http://www.banyanops.com/blog/analyzing-docker-hub/

19

http://www.banyanops.com/blog/analyzing-docker-hub/

Well that was pessimistic

Computers are hard. Let’s just look at cat pictures, instead.

20

Meet GNU Guix

Guix is the functional package management tool for the GNU
system.

It is based on the pioneering work of the Nix project. 7

7http://nixos.org/nix/

21

http://nixos.org/nix/

Meet GuixSD

GuixSD is the GNU/Linux distribution that uses Guix as its
package manager.

22

What does “functional” mean?

“Functional” in this context means treating package builds as
functions, in the mathematical sense.

emacs = f(gcc,make,coreutils,...)

23

Functional package management

Benefits:

• Build reproducibility

• No single point of trust

• Unprivileged package management

• Atomic upgrades and roll backs

• Multiple variants of the same software may coexist

24

Functional package management

The complete dependency graph is captured, precisely, down
to the bootstrap binaries.

No SAT solver or other complex algorithm for dependency
resolution.

25

Functional package management

To view package builds this way, Guix performs builds in an
isolated container in which only the specified dependencies are
accessible.

Build results are immutable.

This maximizes build reproducibility.

26

Reproducible builds

Reproducible builds produce bit-identical binaries when
performed multiple times under the same conditions.

Requires fixing issues in upstream build systems that are
nondeterministic.

27

Why?

“With reproducible builds, multiple parties can redo this
process independently and ensure they all get exactly the same
result. We can thus gain confidence that a distributed binary
code is indeed coming from a given source code.” 8

8https://reproducible-builds.org/

28

https://reproducible-builds.org/

Use cases

29

Transparent

Guix is a source-based package manager, but will transparently
download pre-built binaries from a trusted party, if available.

Otherwise, it will simply build from source.

30

Decentralized

In Guix, there is no central point of trust for receiving pre-built
binaries (substitutes).

31

Decentralized

Guix provides http://hydra.gnu.org, but it is optional.

Users may authorize zero or more substitute servers, or even
publish their own substitutes for others to use via guix
publish.

32

http://hydra.gnu.org

Challenge authority

When builds are reproducible, users may challenge their
substitute providers by building locally and comparing the
results.

33

Unprivileged

Users can build and install software without root privileges.

34

Unprivileged

Each user may have one or more “profiles”, a union of many
packages.

Use cases:

• Alyssa and Ben use different versions of Emacs

• Alyssa hacks on 2 Ruby projects that require different
versions

35

Atomic

Package installation/removal and full-system updates are
atomic operations, meaning that either the operation
succeeds, or nothing happens.

36

Roll back

Any package transaction may be rolled back, likewise for
full-system upgrades.

If a full-system update goes wrong, just boot into the previous
working generation!

37

Coexistence

Each package has its own unique directory in the store that
contains its build artifacts.

You can have every version of Ruby, Python, and Perl under
the sun and that’s OK!

38

Demo!

guix package

guix challenge

39

Hacking

Guix is made to be maximally hackable, taking inspiration
from Emacs.

We seek to intentionally blur the line between user and
developer.

40

Choice of language

Guix is rather special in its choice of implementation language.

41

Philosophy

It’s better to extend an existing programming language for
package recipes and configuration files rather than making a
new, domain-specific one.

42

Embedded vs. External DSLs

Using an extensible programming language as a host has
several advantages compared to external DSLs:

• No new parser, interpreter/compiler, editor tools, etc. to
maintain

• Access to all available libraries of the host language

• Extensions to the host language can be used as a library
by others

Not all general-purpose programming languages are suitable
for embedding new languages, 9 so which did we choose?
9“How to be a good host: miniKanren as a case study”
https://www.youtube.com/watch?v=b9C3r3dQnNY

43

https://www.youtube.com/watch?v=b9C3r3dQnNY

Guile Scheme

GNU Guile is a Scheme implementation and the official
extension language of the GNU project.

It’s a great choice for EDSLs because of Scheme’s hygienic
macro system.

It’s a great choice for Guix because purely functional
programming is well-supported in Scheme.

44

Guile goes with everything

Guix uses Guile for nearly everything:

• Initial RAM disk

• Init system (GNU Shepherd, formerly GNU dmd)

• Package recipes (including build scripts!)

• Command line tools

• Low-level POSIX/Linux utilities (such as
call-with-container)

45

Guix as a library

Guix is a big collection of Guile modules.

Packages are first-class Scheme objects.

Anyone can use Guix as a library to write new Guile programs
that manipulate package recipes, create new user interfaces
(like a web UI), etc.

46

Example package recipe

(define-public livestreamer
(package

(name "livestreamer")
(version "1.12.2")
(source (origin

(method url-fetch)
(uri (string-append

"https://github.com/chrippa/livestreamer/archive/v"
version ".tar.gz"))

(file-name (string-append "livestreamer-" version ".tar.gz"))
(sha256
(base32
"1fp3d3z2grb1ls97smjkraazpxnvajda2d1g1378s6gzmda2jvjd"))))

(build-system python-build-system)
(arguments
’(#:tests? #f)) ; tests rely on external web servers

(native-inputs
‘(("python-setuptools" ,python-setuptools)))

(propagated-inputs
‘(("python-requests" ,python-requests)

("python-singledispatch" ,python-singledispatch)))
(synopsis "Internet video stream viewer")
(description "Livestreamer is a command-line utility that extracts streams

from various services and pipes them into a video playing application.")
(home-page "http://livestreamer.io/")
(license license:bsd-2)))

47

Dependency graph

48

Demo!

Emacs + Geiser

49

Other user interfaces

Besides the CLI, there’s also an Emacs interface, naturally.

Proof of concept web interface. (not in Guix core)

50

Demo!

Emacs

51

Importing packages

The guix import tool that can automatically generate code
snippets for packages found in foreign systems.

Supported systems include: PyPI, RubyGems, CPAN,
Hackage, ELPA, and CRAN.

52

Auto-updating

The guix refresh tool can automatically find the latest
release of certain software.

For example, Python packages can be updated by querying
PyPI for information on the latest release.

53

Demo!

guix import

54

Reproducible development environments

Getting the dependencies needed to create development
environments can be tough.

Many languages invent their own solution, but this is a general
problem.

55

Reproducible development environments

Guix has a tool for this: guix environment

Think of it like a language-agnostic version of Python’s
virtualenv.

56

Reproducible development environments

Environments can be purified via standard environment
variables or, for better isolation, Linux containers.

This allows developers to have confidence that potential
contributors will be able to build their software.

57

Demo!

guix environment

58

Full-system configuration

The Guix System Distribution supports a consistent
whole-system configuration mechanism.

All aspects of a system configuration are declared in a single
place.

59

Advantages

Easy to replicate configuration on different machines without
resorting to additional tools layered on top.

System upgrades are atomic and can be rolled back.

60

Example system configuration

(operating-system
(host-name "izanagi")
(timezone "America/New_York")
(locale "en_US.UTF-8")
(bootloader (grub-configuration (device "/dev/sda")))
(file-systems (cons (file-system

(device "root")
(title ’label)
(mount-point "/")
(type "ext4"))

%base-file-systems))
(users (list (user-account

(name "dave")
(comment "David Thompson")
(group "users")
(supplementary-groups ’("wheel" "netdev" "audio"

"video" "cdrom"))
(home-directory "/home/dave"))))

(packages (cons* adwaita-icon-theme avahi dbus gnome-terminal
htop less man-db nss-certs openssh pulseaudio
wicd unzip rsync xfce
%base-packages))

(services %desktop-services)
(name-service-switch %mdns-host-lookup-nss))

61

Service graph

62

Demo!

guix system vm

63

Project status

• Full-featured package manager

• 3,000 packages, 4 platforms

• Guix System Distribution in beta

• Binaries at http://hydra.gnu.org

• Variety of useful tools

64

http://hydra.gnu.org

Project status

https://www.openhub.net/p/gnuguix 65

https://www.openhub.net/p/gnuguix

Project status

66

The people have spoken

67

Project status

≈200–500 new packages per release. More needed!

68

Future

I intend to focus on:

• A cluster deployment tool: guix deploy

• Improved support for GuixSD containers

69

Future

More generally:

• Stronger build farm

• More packages that are reproducible

• GNOME

• LVM

• Encrypted root for everyone

70

Join us!

• Use Guix on top of your existing distro

• Use the distribution

• Add new packages or upgrade existing ones

• Write system services

• Add new translations

• Tell us your ideas!

71

Join us!

We are currently collecting donations via the FSF to purchase
new servers for our build farm!

Since mid-Decemeber, $8,200 USD has been raised.

https://gnu.org/software/guix/donate/

72

https://gnu.org/software/guix/donate/

Join us!

Chat with us in the #guix channel on Freenode or on the
guix-devel@gnu.org and help-guix@gnu.org mailing lists.

73

LibrePlanet 2016

Christopher Webber of the GNU MediaGoblin project and
myself will be co-presenting “Solving the Deployment Crisis
with GNU Guix” at LibrePlanet 2016 on March 19th or 20th.

Visit https://libreplanet.org/2016 for full details.

74

https://libreplanet.org/2016

Thank you!

Visit https://gnu.org/software/guix for source code,
documentation, past talks, etc.

Questions?

75

https://gnu.org/software/guix

Legal

© 2016 David Thompson <davet@gnu.org>

This presentation is licensed under the Creative Common
Attribute Share-Alike 4.0 International license.

GNU Guix and GuixSD logo, GFDL,
http://gnu.org/s/guix/graphics

Copyright of other images included in this document is held by
their respective owners.

76

http://gnu.org/s/guix/graphics

