

Valerie Young
(spectranaut)

Linux Conf Australia 2016

Reproducible Builds

Valerie Young
(spectranaut)

Linux Conf Australia 2016

What if you could always compile free software?

Reproducible Builds

Valerie Young

● F96E 6B8E FF5D 372F FDD1 DA43 E8F2 1DB3 3D9C 12A9

● spectranaut on OFTC/freenode

● Studied physics and computer science at BU (2012)

● Programmer at athenahealth

● Ubuntu/Debian user since 2012

● Debian contributor since May 2016

...Thanks to Outreachy!

● outreachy.gnome.org

● Funding for women and minorities to work on free software

● 3 month projects (like Google summer of code)

● 3 month (and beyond) free software mentor

● Not limited to programming

Overview

 1. What is “Reproducible Builds”?

 2. Reproducible builds effect on software freedoms

 3. Up-to-date history of reproducible builds efforts

 4. What is left to do..?

Overview

 1. What is “Reproducible Builds”?

 2. Reproducible builds effect on software freedoms

 3. Up-to-date history of reproducible builds efforts

 4. What is left to do..?

Reproducible Builds

Reproducible Builds

1. Compilation of binary should be deterministic

Goals:

Reproducible Builds

1. Compilation of binary should be deterministic

2. Build environment of binary should be reproducible

Goals:

Overview

 1. What is “Reproducible Builds”?

 2. Reproducible builds effect on software
freedoms

 3. Up-to-date history of reproducible builds efforts

 4. What is left to do..?

Software Freedoms

● (0) The freedom to run the program for any purpose.

● (1) The freedom to study how the program works, and
change it to your needs.

● (2) The freedom to redistribute copies so you can help
your neighbor.

● (3) The freedom to improve the program, and release
your improvements to the public, so that the whole
community benefits.

Software Freedoms

● (0) The freedom to run the program for any purpose.

● (1) The freedom to study how the program works, and
change it to your needs.

● (2) The freedom to redistribute copies so you can help
your neighbor.

● (3) The freedom to improve the program, and release
your improvements to the public, so that the whole
community benefits.

Freedom 1a:
Can we study the program?

Freedom 1a:
Can we study the program?

source binarybuild

Freedom 1a:
Can we study the program?

source binarybuild

can be verified can be used

prove it
to me!

Freedom 1a:
Can we study the program?

● Not without faith.. or bit-for-bit reproducibility!

Freedom 1a:
Can we study the program?

● Not without faith.. or bit-for-bit reproducibility!

● Even one bit can compromise a computer
– OpenSSH (CVE-2002-0083)

Freedom 1a:
Can we study the program?

● Not without faith.. or bit-for-bit reproducibility!

● Even one bit can compromise a computer
– OpenSSH

● Without reproducible builds, the developer is
single point of failure
– Compromised human or machines

For more security motivation, see:
https://events.ccc.de/congress/2014/Fahrplan/events/6240.html

Freedom 1b:
Can we change the program?

source binarybuild

Freedom 1b:
Can we change the program?

● Not without great difficulty… or reproducible
builds!

Freedom 1b:
Can we change the program?

● Not without great difficulty… or reproducible
builds!

● “Build environment should be reproducible”

– Lower barrier to contribution for lazy people

Freedom 1b:
Can we change the program?

● Not without great difficulty… or reproducible
builds!

● “Build environment should be reproducible”

– Lower barrier to contribution for lazy people

● Arguably, code is easier to edit than compile

– Lower barrier to contribution for non-technical,
competent people (designers? User
researchers?)

Overview

 1. What is “Reproducible Builds”?

 2. Reproducible builds effect on software freedoms

 3. Up-to-date history of reproducible builds

 4. What is left to do..?

 How to change 60 years of
non-deterministic programming

habits?

● Since 2012

● Why?
– $$$

● Created Gitian
– Build in VM

● Removes indeterminacies:
– Compiler versions
– Kernel versions
– Build machine meta-data (hostname, time)

● Reproducibly built since 2012

● Why?
– Human lives.

● More complex
– Firefox browser
– And 50+ packages

● Used Gitian
– And a few months of developing..

What else did Tor find?

● Python os.walk: Multi-threaded build processes
results in random file ordering.

● GNU binutils: Consistently random bits... that
result from uninitialized memory.

More fun Tor reproducibility facts:
 https://blog.torproject.org/blog/deterministic-builds-part-two-technical-details

What else did Tor find?

● Python os.walk: Multi-threaded build processes
results in random file ordering.

● GNU binutils: Consistently random bits... that
result from uninitialized memory.

Problems they could not solve:
● Takes a long time
● Browser profile-guided optimizations

More fun Tor reproducibility facts:
 https://blog.torproject.org/blog/deterministic-builds-part-two-technical-details

Think reproducing Tor
sounds hard?

● >40,000 packages
● ~1000 developers
● All the languages..
● ..all the compilers.

How to began:

● A discussion at DebConf13 and a wikipage

● Attempts to prove reproducibility of a few packages

● Quickly realized maybe problems existed in
packaging toolchain

● End of 2014 saw the beginning of continuous testing
of all packages

tests.reproducible-builds.org

tests.reproducible-builds.org/<package>

● Test = building twice and comparing

● Testing on amd64, arm and i386

● Variations between builds:

• domain
• hostname
• timezone
• language

• locale
• time
• user
• program id

• shell
• kernel
• cpu type
• file ordering

Reproducible Unreproducible

Unreproducible Packages
Diffoscope

image

image

https://try.diffoscope.org

Unreproducible Packages
Issue Tracking

● We have “notes” for most unreproducible packages

● 261 distinct issues tagged in notes.git

– Described in issues.git

– Examples: timestamps_in_zip,
captures_build_path, different_encoding

● Many incredible Debian developers and
contributors up keep these notes.

– Filed >2000 bugs with patches

– Filed >3000 bugs that fail to build with new libs

TIMESTAMPS
● 112 issues are related to recording the time of the

build in the binary.

– Need build timestamps for documentation?

– Need build timestamps for reconstructing build env?

– Need builds timestamps for randomness seed?

– Need build times stamps for ...?

TIMESTAMPS
● 112 issues are related to recording the time of the

build in the binary.

– Need build timestamps for documentation?

– Need build timestamps for reconstructing build env?

– Need builds timestamps for randomness seed?

– Need build times stamps for ...?

 Nope, you don't!

TIMESTAMPS
● Debian recommends: SOURCE_DATE_EPOCH

– Set to the last time the source was changed

– Specification has been written for upstream
developers

– Many have followed:
● Debhelper, epydoc, ghostscript, ocamldoc…
● In discussion: GCC for __DATE__ and __TIME__

macros

Additional projects

● Testing: OpenWRT, coreboot, NetBSD, FreeBSD
● Almost testing: ArchLinux, Fedora and F-Driod

More information

● reproducible-builds.org
● Lunar talk on “How to make your software

reproducible” at Chaos Communication Camp
2015

Overview

 1. What is “Reproducible Builds”?

 2. Reproducible builds effect on software freedoms

 3. Recent history of reproducible builds

 4. What is left to do..?

“Reproduced Builds”
are not enough

● Debian is 0% reproducible until any user can
reproduce any given binary Debian package.

● “Build environment should be reproducible”

Part I

Build environment metadata:
Debian's .buildinfo files

● .buildinfo files contain:
– Checksum of the source
– Checksum of generated binaries
– Exact versions of all build dependencies

● Left to do: distribute .buildinfo files

 .buildinfo file
Format: 1.9
Build-Architecture: amd64
Source: txtorcon
Binary: python-txtorcon
Architecture: all
Version: 0.11.0-1
Build-Path: /build/txtorcon-
0.11.0-1
Checksums-Sha256:
 a26549d9…7b 125910 python-
txtorcon_0.11.0-1_all.deb
 28f6bcbe…69 2039 txtorcon_0.11.0-
1.dsc
Build-Environment:
 base-files (= 8),
 base-passwd (= 3.5.37),
 bash (= 4.3-11+b1),
 …

Build environment metadata:
Can you verify the builds?

● We need tools to re-create build environment
– Debian: can use .buildinfo files and

archive.debian.net
– other distros: ...?

Delivering build environment metadata
with software..

Delivering build environment metadata
with software..

Delivers the freedom to modify software.

With this software freedom, what else
do we get?

● Guaranteed compilation → more contributors!

With this software freedom, what else
do we get?

● Guaranteed compilation → more contributors!

● Easier regulation..
– Allows audits of binaries
– Presently unaudited binaries include: voting

software, VW emission scandal…

● Easier GPL enforcement

With this software freedom, what else
do we get?

● Guaranteed compilation → more contributors!

● Easier regulation..
– Allows audits of binaries
– Presently unaudited binaries include: voting

software, VW emission scandal…

● Easier GPL enforcement

● Perhaps a more long term preference for free
software?

“Reproduced Builds”
are not enough

● How can we surface verified reproducibility to
a non-developer?

Part II

Debian:
Uploading and Verifying

● Who will rebuild software?
– Dedicated rebuilders
– Other developers

● Sign and share the signatures on binaries
– “web of trust” solution probably won't scale

Debian:
Downloading and Verifying

Do you really want to install this
unreproducible software? (y/N)

Debian:
Downloading and Verifying

Do you really want to install this
unreproducible software? (y/N)

Do you want to build these packages with
unconfirmed checksums before installing? (Y/n)

Debian:
Downloading and Verifying

Do you really want to install this
unreproducible software? (y/N)

Do you want to build these packages with
unconfirmed checksums before installing? (Y/n)

How many signed checksums do you require to call
a package “reproducible”?

Which rebuilders do you trust?

 https://events.ccc.de/congress/2014/Fahrplan/events/6240.html

Delivering the verification of
reproducibility with binaries..

Delivering the verification of
reproducibility with binaries..

Delivers the trust we have in free software
because we can study the source.

With this software freedom, what do
we get?

● Assurance against compromised developers

● Assurance against compromised compilers
– Unless you compromise them all!

● Free software = provably safer and more
transparent than proprietary.

Thanks!

More information:
reproducible-builds.org

#reproducible-builds on OFTC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

