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For starters ...
● This is meant as a very high-level introduction 

to the product development process
● I am not an expert on anything
● Ask questions at any time



Outline
● Design process
● Silicon manufacturing and test
● Volume production
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Product Definition
● Technology node
● Features
● Power
● Performance
● Chip Area (== cost)

Image: amd.com



Example: AMD EPYC2

Image: https://www.servethehome.com/amd-epyc-7002-series-rome-delivers-a-knockout/4/



High-level design
● Design features broken 

down into smaller 
logic blocks

● Pipeline structure 
determined

Image: https://www.amd.com/en/technologies/zen-core



High-level Models
● Performance simulator
● Power estimation simulations
● Rough floorplan & chip area estimation



 

Design Flow

Product
Definition

High-level model
simulation

Logic (RTL)
Design

RTL design
verification

Physical Design Physical verification



 

Logic Design
● Typically done using a Hardware Description Language 

such as Verilog
● Often uses libraries of commonly used elements like 

FIFOs, arrays, muxes 
● Abstract behavioral models of analog elements – e.g. 

clock generator, high-speed IO drivers
● Needs to be aware of pipelines and timing  



 

Verilog example: 4-input mux
module mux4(

input [3:0] a,
input [3:0] b,
input [3:0] c,
input [3:0] d,
input [1:0] sel,
output reg [3:0] out);

  always @* begin
case(sel[1:0])

2’b00: out[3:0] = a[3:0];
2’b01: out[3:0] = b[3:0];
2’b10: out[3:0] = c[3:0];
2’b11: out[3:0] = d[3:0];

endcase
  end
endmodule

mux4

a[3:0]

b[3:0]

c[3:0]

d[3:0]

out[3:0]

sel[1:0]



 

Another example
module lshift (input d,
               input clk,
               input rst_l,
               output reg [3:0] sreg);
 
   always @ (posedge clk) begin
      if (!rst_l) begin
         sreg[3:0] <= 4'b0;
      end else begin
         sreg[3:0] <= {sreg[2:0], d};
      end
   end
endmodule

● What does this do?
● How is it different from 

previous mux example?



Special Consideration: DFx
● Design For Test:

– JTAG, Scan, Loopback modes
● Design For Debug:

– Performance counters, HW breakpoints, Debug 
output pins 



 

Design Verification
● Design verification is done to confirm that the design meets specification, i.e. 

is functionally correct
– Cost of missed bugs can be very severe in terms of material cost and TTM

● Uses a mixture of simulation based checks as well as formal tools
● Unit-level as well as chip-level testbenches are constructed to run through 

different scenarios
– Use both directed and constrained random tests to drive input

● Checkers and assertions are used to catch illegal conditions
● Extensive use of functional coverage and code coverage
● Generally 3 verification engineers for every RTL design engineer on the team 



 

Testbench examples

Image: https://www.researchgate.net/figure/UVM-test-bench-Architecture-All-
complex-test-benches-may-be-architected-as-shown-in-the_fig1_303759959 Image: https://verificationacademy.com/verification-horizons/june-2017-volume-

13-issue-2/automation-and-reuse-in-risc-v-verification-flow



 

Simple Testbench: mux
module mux_tb_top;

reg  [3:0] a, b, c, 
d;

wire [3:0] out;

reg  [1:0] sel;

reg        clk;

integer    i;

mux4 mux4_i0(

.a (a),

.b (b),

.c (c),

.d (d),

.sel (sel),

.out (out));

   always #5 clk = ~clk;

   always @ (posedge clk) begin

      sel <= sel + 1;

      c[3:0] <= $urandom;

      d[3:0] <= $urandom;

      i = i + 1;

   end

   always @(i) begin

      if (i == 10)

         $finish;

   end

endmodule // mux_tb_top

initial begin

    $dumpfile("dump.vcd");

    $dumpvars(0, mux_tb_top);

    sel[1:0] = 2'b0;

    a[3:0] = $urandom;

    b[3:0] = $urandom;

    c[3:0] = $urandom;

    d[3:0] = $urandom;

    clk = 0;

    i = 0;

$monitor ("[%0t] sel=0x%0h a=0x%0h 
b=0x%0h c=0x%0h d=0x%0h out=0x%0h", 
$time, sel, a, b, c, d, out);

end



 

Simulation Log
[0] sel=0x0 a=0x4 b=0x1 c=0x9 d=0x3 out=0x4

[5] sel=0x1 a=0x4 b=0x1 c=0xd d=0xd out=0x1

[15] sel=0x2 a=0x4 b=0x1 c=0x5 d=0x2 out=0x5

[25] sel=0x3 a=0x4 b=0x1 c=0x1 d=0xd out=0xd

[35] sel=0x0 a=0x4 b=0x1 c=0x6 d=0xd out=0x4

[45] sel=0x1 a=0x4 b=0x1 c=0xd d=0xc out=0x1

[55] sel=0x2 a=0x4 b=0x1 c=0x9 d=0x6 out=0x9

[65] sel=0x3 a=0x4 b=0x1 c=0x5 d=0xa out=0xa

[75] sel=0x0 a=0x4 b=0x1 c=0x5 d=0x7 out=0x4

[85] sel=0x1 a=0x4 b=0x1 c=0x2 d=0xf out=0x1

[95] sel=0x2 a=0x4 b=0x1 c=0x2 d=0xe out=0x2



 

Waveform view
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Physical Design Flow

Gate-level NetlistSynthesis ToolVerilog RTL

Timing, 
Place & Route

Layout
(GDS-II)



 

Logic Synthesis
● Converts RTL description into logic gates
● Modern tools first minimize the logic and then map it to 

library of gate elements
● Takes timing targets and other size or power constraints as 

inputs
● Result is a netlist file that is a text representation of a 

schematic



 

Synthesis example
● 4:1 mux constructed 

from NAND gates and 
inverters



 

Timing, Place & Route
● Takes each gate and places corresponding layout cell in the 

block
● Routes interconnect (wires) between cells based on 

connectivity and timing constraints
● Clock tree generation
● Optimize and iterate for most compact layout that satisfies 

all constraints



 

Example: NAND gate

C = ~(A & B);

Image: Electric User’s Manual



 

Layout example: 4:1 mux

Image credit: http://cmosedu.com/jbaker/courses/ee421L/f13/students/lopeztel/proj/proj.html



 

Fullchip layout: 
MOS 6502

Image: http://www.visual6502.org



 

Physical Verification
● Run timing simulations
● Check if final netlist matches original RTL intent 

(logical equivalence)
● Check equivalence of netlist to final layout (LVS)
● Ensure final layout meets design rules (DRC)



 

Tapeout
● Final verified GDSII mask released to fab for 

initial sample production
● Cake and ice cream celebration ensues



 

In parallel ...
● Microcode & firmware design and testing
● Software development: firmware, BIOS, compilers, 

drivers etc.
● Advanced use case testing using FPGAs or 

emulators
● Test pattern generation for chip testing



 

Fabrication

Images: https://www.wired.com/2010/10/inside-a-state-of-the-art-cleanroom/



 

Wafer testing
● Wafers are first tested for basic defects – bad die 

are marked
● Wafer is cut into individual dies and good dies 

are sent for packaging
● Packaged chip is tested again for packaging 

related defects  



 

Automated testing
● ATE equipment allows testing 

of the chip in a highly 
controlled environment

● Uses pre-generated pattern of 
inputs and compares the 
output to the known “golden” 
output values 

Teradyne UltraFLex Tester



 

Initial bringup & validation
● Initial samples are taken to special labs for exhaustive electrical 

and functional testing
● Chip is placed in a PCB along with other components
● FW and SW are loaded and booted up on the system
● Any issues found are analyzed and debugged
● Power and performance are characterized across different parts
● Major issues may necessitate design changes :-(



 

Power/Performance characterization
● Major benchmarks and special microbenchmarks are run 

and settings tuned to get maximum performance across 
workloads

● Power measurements are analyzed to get optimal point on 
frequency vs. voltage curve (perf/watt optimization)

● Clock and power gating heuristics are improved to get 
reduced power under idle or low stress workloads



 

Compliance testing
● Exhaustive checks to ensure adherence to 

industry (or de-facto) standards
– USB, DDR, PCIe etc.
– “Plugfest” held to connect various 3rd party devices

● ISA compatibility: AMD64, RISC-V, MIPS etc.



 

Debugging Silicon
● Chip is a blackbox – can only look at I/Os

– Oscilloscopes and logic analyzers can help look at the external I/Os
● JTAG based hardware debuggers help on-chip debugging using DFD 

features built into the chip:
– HW breakpoints allow stopping execution on certain events
– Debug triggers and scan dumps help get better insight into internal state in the 

chip
● Looking at performance counters in the chip can help identify certain 

performance bottlenecks and lead to better software optimization



 

JTAG

By Vindicator - Own work., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=838166

● Daisy-chained devices can be individual chips on a PCB or modules within the same chip
● In test mode, functional mode clocks are stopped, TCK clock is fed and TMS is enabled.
●  JTAG commands are sent via the TDI pin. Output is observed on the TDO pin



 

Volume Production
● Automated high-volume testing setup to test EVERY chip prior to shipment

– ATE testing at various temperature & humidity conditions
– System-level test for longer software-based tests

● Chips are sorted and binned based on what passed vs failed
– E.g. a chip that failed some test(s) at 3GHz but passed all tests at 2.8GHz would be 

binned as a 2.8GHz part
● Failures are analyzed for yield improvement
● Feedback provided to next-generation designs



 

Shipment
● Chips are packaged and boxed for retail sale
● Also put into trays or reels for automated pick-

and-place machines for PCB assembly



 

More questions?
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