
Silicon: From Design to ProductionShankar ViswanathanBLU - 2019/10/16

For starters ...
● This is meant as a very high-level introduction

to the product development process
● I am not an expert on anything
● Ask questions at any time

Outline
● Design process
● Silicon manufacturing and test
● Volume production

Design Flow

Product
Definition

High-level model
simulation

Logic (RTL)
Design

RTL design
verification

Physical Design Physical verification

Design Flow

Product
Definition

High-level model
simulation

Logic (RTL)
Design

RTL design
verification

Physical Design Physical verification

Product Definition
● Technology node
● Features
● Power
● Performance
● Chip Area (== cost)

Image: amd.com

Example: AMD EPYC2

Image: https://www.servethehome.com/amd-epyc-7002-series-rome-delivers-a-knockout/4/

High-level design
● Design features broken

down into smaller
logic blocks

● Pipeline structure
determined

Image: https://www.amd.com/en/technologies/zen-core

High-level Models
● Performance simulator
● Power estimation simulations
● Rough floorplan & chip area estimation

Design Flow

Product
Definition

High-level model
simulation

Logic (RTL)
Design

RTL design
verification

Physical Design Physical verification

Logic Design
● Typically done using a Hardware Description Language

such as Verilog
● Often uses libraries of commonly used elements like

FIFOs, arrays, muxes
● Abstract behavioral models of analog elements – e.g.

clock generator, high-speed IO drivers
● Needs to be aware of pipelines and timing

Verilog example: 4-input mux
module mux4(

input [3:0] a,
input [3:0] b,
input [3:0] c,
input [3:0] d,
input [1:0] sel,
output reg [3:0] out);

 always @* begin
case(sel[1:0])

2’b00: out[3:0] = a[3:0];
2’b01: out[3:0] = b[3:0];
2’b10: out[3:0] = c[3:0];
2’b11: out[3:0] = d[3:0];

endcase
 end
endmodule

mux4

a[3:0]

b[3:0]

c[3:0]

d[3:0]

out[3:0]

sel[1:0]

Another example
module lshift (input d,
 input clk,
 input rst_l,
 output reg [3:0] sreg);

 always @ (posedge clk) begin
 if (!rst_l) begin
 sreg[3:0] <= 4'b0;
 end else begin
 sreg[3:0] <= {sreg[2:0], d};
 end
 end
endmodule

● What does this do?
● How is it different from

previous mux example?

Special Consideration: DFx
● Design For Test:

– JTAG, Scan, Loopback modes
● Design For Debug:

– Performance counters, HW breakpoints, Debug
output pins

Design Verification
● Design verification is done to confirm that the design meets specification, i.e.

is functionally correct
– Cost of missed bugs can be very severe in terms of material cost and TTM

● Uses a mixture of simulation based checks as well as formal tools
● Unit-level as well as chip-level testbenches are constructed to run through

different scenarios
– Use both directed and constrained random tests to drive input

● Checkers and assertions are used to catch illegal conditions
● Extensive use of functional coverage and code coverage
● Generally 3 verification engineers for every RTL design engineer on the team

Testbench examples

Image: https://www.researchgate.net/figure/UVM-test-bench-Architecture-All-
complex-test-benches-may-be-architected-as-shown-in-the_fig1_303759959 Image: https://verificationacademy.com/verification-horizons/june-2017-volume-

13-issue-2/automation-and-reuse-in-risc-v-verification-flow

Simple Testbench: mux
module mux_tb_top;

reg [3:0] a, b, c,
d;

wire [3:0] out;

reg [1:0] sel;

reg clk;

integer i;

mux4 mux4_i0(

.a (a),

.b (b),

.c (c),

.d (d),

.sel (sel),

.out (out));

 always #5 clk = ~clk;

 always @ (posedge clk) begin

 sel <= sel + 1;

 c[3:0] <= $urandom;

 d[3:0] <= $urandom;

 i = i + 1;

 end

 always @(i) begin

 if (i == 10)

 $finish;

 end

endmodule // mux_tb_top

initial begin

 $dumpfile("dump.vcd");

 $dumpvars(0, mux_tb_top);

 sel[1:0] = 2'b0;

 a[3:0] = $urandom;

 b[3:0] = $urandom;

 c[3:0] = $urandom;

 d[3:0] = $urandom;

 clk = 0;

 i = 0;

$monitor ("[%0t] sel=0x%0h a=0x%0h
b=0x%0h c=0x%0h d=0x%0h out=0x%0h",
$time, sel, a, b, c, d, out);

end

Simulation Log
[0] sel=0x0 a=0x4 b=0x1 c=0x9 d=0x3 out=0x4

[5] sel=0x1 a=0x4 b=0x1 c=0xd d=0xd out=0x1

[15] sel=0x2 a=0x4 b=0x1 c=0x5 d=0x2 out=0x5

[25] sel=0x3 a=0x4 b=0x1 c=0x1 d=0xd out=0xd

[35] sel=0x0 a=0x4 b=0x1 c=0x6 d=0xd out=0x4

[45] sel=0x1 a=0x4 b=0x1 c=0xd d=0xc out=0x1

[55] sel=0x2 a=0x4 b=0x1 c=0x9 d=0x6 out=0x9

[65] sel=0x3 a=0x4 b=0x1 c=0x5 d=0xa out=0xa

[75] sel=0x0 a=0x4 b=0x1 c=0x5 d=0x7 out=0x4

[85] sel=0x1 a=0x4 b=0x1 c=0x2 d=0xf out=0x1

[95] sel=0x2 a=0x4 b=0x1 c=0x2 d=0xe out=0x2

Waveform view

Design Flow

Product
Definition

High-level model
simulation

Logic (RTL)
Design

RTL design
verification

Physical Design Physical verification

Physical Design Flow

Gate-level NetlistSynthesis ToolVerilog RTL

Timing,
Place & Route

Layout
(GDS-II)

Logic Synthesis
● Converts RTL description into logic gates
● Modern tools first minimize the logic and then map it to

library of gate elements
● Takes timing targets and other size or power constraints as

inputs
● Result is a netlist file that is a text representation of a

schematic

Synthesis example
● 4:1 mux constructed

from NAND gates and
inverters

Timing, Place & Route
● Takes each gate and places corresponding layout cell in the

block
● Routes interconnect (wires) between cells based on

connectivity and timing constraints
● Clock tree generation
● Optimize and iterate for most compact layout that satisfies

all constraints

Example: NAND gate

C = ~(A & B);

Image: Electric User’s Manual

Layout example: 4:1 mux

Image credit: http://cmosedu.com/jbaker/courses/ee421L/f13/students/lopeztel/proj/proj.html

Fullchip layout:
MOS 6502

Image: http://www.visual6502.org

Physical Verification
● Run timing simulations
● Check if final netlist matches original RTL intent

(logical equivalence)
● Check equivalence of netlist to final layout (LVS)
● Ensure final layout meets design rules (DRC)

Tapeout
● Final verified GDSII mask released to fab for

initial sample production
● Cake and ice cream celebration ensues

In parallel ...
● Microcode & firmware design and testing
● Software development: firmware, BIOS, compilers,

drivers etc.
● Advanced use case testing using FPGAs or

emulators
● Test pattern generation for chip testing

Fabrication

Images: https://www.wired.com/2010/10/inside-a-state-of-the-art-cleanroom/

Wafer testing
● Wafers are first tested for basic defects – bad die

are marked
● Wafer is cut into individual dies and good dies

are sent for packaging
● Packaged chip is tested again for packaging

related defects

Automated testing
● ATE equipment allows testing

of the chip in a highly
controlled environment

● Uses pre-generated pattern of
inputs and compares the
output to the known “golden”
output values

Teradyne UltraFLex Tester

Initial bringup & validation
● Initial samples are taken to special labs for exhaustive electrical

and functional testing
● Chip is placed in a PCB along with other components
● FW and SW are loaded and booted up on the system
● Any issues found are analyzed and debugged
● Power and performance are characterized across different parts
● Major issues may necessitate design changes :-(

Power/Performance characterization
● Major benchmarks and special microbenchmarks are run

and settings tuned to get maximum performance across
workloads

● Power measurements are analyzed to get optimal point on
frequency vs. voltage curve (perf/watt optimization)

● Clock and power gating heuristics are improved to get
reduced power under idle or low stress workloads

Compliance testing
● Exhaustive checks to ensure adherence to

industry (or de-facto) standards
– USB, DDR, PCIe etc.
– “Plugfest” held to connect various 3rd party devices

● ISA compatibility: AMD64, RISC-V, MIPS etc.

Debugging Silicon
● Chip is a blackbox – can only look at I/Os

– Oscilloscopes and logic analyzers can help look at the external I/Os
● JTAG based hardware debuggers help on-chip debugging using DFD

features built into the chip:
– HW breakpoints allow stopping execution on certain events
– Debug triggers and scan dumps help get better insight into internal state in the

chip
● Looking at performance counters in the chip can help identify certain

performance bottlenecks and lead to better software optimization

JTAG

By Vindicator - Own work., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=838166

● Daisy-chained devices can be individual chips on a PCB or modules within the same chip
● In test mode, functional mode clocks are stopped, TCK clock is fed and TMS is enabled.
● JTAG commands are sent via the TDI pin. Output is observed on the TDO pin

Volume Production
● Automated high-volume testing setup to test EVERY chip prior to shipment

– ATE testing at various temperature & humidity conditions
– System-level test for longer software-based tests

● Chips are sorted and binned based on what passed vs failed
– E.g. a chip that failed some test(s) at 3GHz but passed all tests at 2.8GHz would be

binned as a 2.8GHz part
● Failures are analyzed for yield improvement
● Feedback provided to next-generation designs

Shipment
● Chips are packaged and boxed for retail sale
● Also put into trays or reels for automated pick-

and-place machines for PCB assembly

More questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

